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ABSTRACT

Let A be a finite field and denote by GL(n, A) the group of n X n nonsingular
matrices defined over A. Let R C GL(n,A) be a solvable, completely reducible
subgroup of maximal order. For |A] =2, |A]#3 we give bounds for | R | which
improve previous ones. Moreover for [A{=3 or [A]>13 we determine the
structure of R, in particular we show that R is unique, up to conjugacy.

0. Introduction

Let A be a finite field of order g. Denote by GL(n,A) the group of n Xn
nonsingular matrices defined over A. In this paper we are concerned with
solvable, completely reducible subgroups of GL(n,A). Denote by b(n, q) the
maximal possible order of a solvable, completely reducible subgroup of
GL(n.A). T. R. Wolf ([5], thm. 3, p. 1108) showed that b(n,q)= q""#"/24'"
where 6/5 < B <5/4, for all ¢ =2 and n = 1. We shall improve this bound for all
q=2, q#3 and n = 1. Moreover, we shall determine, up to conjugacy, the
structure of a solvable, completely reducible subgroup of GL(n,A) of order
b(n,q), for ¢ >13 and n = 1. In fact, we shall show the following: Let S, be the
symmetric group on n letters. Denote by vy, the maximal possible order of a
solvable subgroup of S,. Then we have the following theorem:

THEOREM A.""  Denote by b(n,q) the maximal possible order of a solvable,
completely reducible subgroup of GL(n, A), where A is a finite field of order q and

q=11. Then
b(n,q)=v.q" foralln =1,

"This work is part of a Ph.D. thesis done at the Hebrew University under the supervision of
Professor A. Mann.

* The assertion of Theorem A is in fact true for g = 8 also. The proof for that can be found in [3].
See also Section 4 at the end of the paper.
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Dixon ([1], thm. 3, p. 418) showed that vy, = a"”' where a =24"". If we set
B(q) =log, a for all ¢ = 11, then clearly ¢**“’ = a. Hence, we have the following
Corollary:

CoroLLARY. Let A and b(n,q) be as in Theorem A. Then:
0.1) b(n,g)=q""?"24"”  foralln =1.

Since 0< B(q) <3 and lim,_... 8(q) = 0, the bound given in (0.1) is indeed an
improvement of the bound given in [5] for all g =11 and n Z 1.
We shall also prove the following theorem:

THEOREM B. Let A be a finite field of order q, where q > 13 and let A* be the
multiplicative group of A. Let R CGL(n,A) be a solvable, completely reducible
subgroup of order b(n,q), where n = 1. Then there exists a solvable subgroup
I'. C S. of maximal order, a solvable subgroup I'._, C S, of maximal order, and a
solvable irreducible subgroup H C GL(2,A) of maximal order such that:

(a) If n# 2(mod 4) or n =6(mod 16), then R is conjugate in GL(n,A) to the
wreath product A* [T,.

(B) If n =2(mod 4) but n# 6(mod 16), then R is conjugate in GL(n,A) to the
direct product H X (A* {T',_,).

A. Mann ([2]) showed that all solvable subgroups of maximal order in S, form
a conjugacy class of subgroups in S,. D. A. Suprunenko ([4], thm. 6, p. 167)
determined up to conjugacy all maximal, irreducible, solvable subgroups of
GL(2,A). Hence, as a corollary we shall show:

COROLLARY. If A is a finite field of order q and q > 13, then the set of all
solvable, completely reducible subgroups of GL(n,A), of order b(n,q), form a
conjugacy class of subgroups in GL(n,A), for all n = 1.

1. Preliminaries and notations

Throughout this paper the following notations will be used:

(a) A shall denote a finite field and q shall denote its order. We denote by A*
the multiplicative group of A.

(b) We shall fix a solvable subgroup of maximal order in S, and denote it by
I'.. We denote the order of I', by ¥x.

(c) Let 1CS,,, I”CS,,,...,['"CS,, be subgroups. Set n =Zi., n.. By the
direct product I”XT'®x -+ xI'” we mean the subgroup of S, acting on the
set of indices {1,2,...,n} like I'” does,..., and acting on the set indices
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S+, +2,. ., Siin} like T does on {1,...,n} respectively,
where 2=k =1t

(d) Let H; CGL(n,A) be subgroups for 1 =i=t By the direct product
H, X H,X --+ X H, we mean the subgroup of GL (n, A) consisting of all matrices
of the form diag(h., ha,...,h) where h, EH, for 1=i=t and n =3i{_ n.

(e) The maximal order of a solvable, completely reducible subgroup of
GL(n, A) shail be denoted by b(n,q).

(f) Let G be a group and let G,,G.CG be subgroups. We shall write
G\~ G- to denote that G, and G; are conjugate subgroups in G. If the group G
is understood from the context we shall merely write G, ~ G.-.

From now on we shall assume ¢ =11 and we mention that all numerical
variables in this paper shall be integer variables.

This paper extensively uses the following concepts:

(1) The wreath product of permutation groups (see [4], p. 11). If " CS, and
I CS, are subgroups, then from now on I [T shall denote the wreath product
of I" and I'" which is a subgroup of S,.,.

(2) The wreath product of a linear group and a permutation group (see [4], p.
106). If R C GL(n,A) is a linear group and I'C S, is a permutation group then
from now on R [T shall denote the wreath product of R and I' which is a
subgroup of GL(n - t,A).

(3) Primitivity and imprimitivity of linear groups (see [4], chapter 15, p. 103).

The proof of Theorem A and Theorem B relies on results of D. A.
Suprunenko [4] and A. Mann [2] which we state below.

(1.1) ([4], p. 139). Let M be a maximal primitive solvable subgroup of
GL(n,A), then M contains the following invariant series:
(E.))CFCACVCM
where we fix the following notations:
(1) M is a maximal primitive solvable subgroup of GL(n, A).
(2) E, is the identity element in GL(n, A).
(3) F is a maximal abelian normal subgroup of M.
(4) V is the centralizer of F in M.
(5) A/F is maximal among the subgroups of M/F satisfying:
(i) A/F is an abelian normal subgroup of M/F.
(i) A/JFCV/FE

(1.2) ({4), lemma 1, p. 129) F = K*, where K* is the multiplicative group of a
field extension K of E,-A and [K:E, - A] divides n. We fix the letter m to
denote m =[K : E, - A] and we fix the letter r (like in [4]) to denote r = n/m.
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(1.3) ([4], thm. 3, p. 141) [A :F] = r".

(1.4) ([4], thm. 15, p. 151) If r =pl.‘p;3---p2‘ is a prime factorization of r
(where p,#p; for i#j, 1=ij=k). Then V/A is isomorphic to a solvable
subgroup of the direct product of k symplectic groups Sp(2L,p;), j=1,.... k.

(1.5) ([4], thm. 1, p. 138) Since V centralizes F, V can be viewed as a subgroup
of GL(r, K) (where K is like in (1.2)) and we have: V is an absolutely irreducible
subgroup of GL(r, K).

(1.6) ([4], Cor. 1, p. 130) [M: V]=m.

(L.7) ([4], thm. 6, p. 167) Every maximal irreducible solvable subgroup of
GL(2,4) is conjugate in GL(2,A) to one of the following three subgroups:

G, of order 2(q — 1Y,

G., of order 2(q°— 1),

G, of order 24(q — 1),
where G.,, G.» and G, are as defined in ([4], chapter 19) and G,; exists iff 2
does not divide ¢q. We fix G, to denote the subgroup mentioned above.

(1.8) ([2]) Let n = 1 be an integer. For convenience of notations denote by I'
the empty set, and for a permutation group I', I'fI'h, =T, and I’y XxI'=T. Let
n =4k +t where k Z0and 0=t =3. Then I, is conjugate in S, to the following
group:

(1) I t=0then I', ~ S.f L.

(2) If t =1 then:

(a) If n =9(mod 16) but n3# 25(mod 64) then I', is conjugate in S, to the
direct product (S Ti-2) X (Ss[ S3).
(B) If n#9(mod 16) or n =25(mod 64) then I', ~I',_; X S1.
(3) If t =2 then:
(@) If n=6(mod 16) then I', is conjugate in S, to the direct product
(84 Ti) X (S5 S2).
(B) If n#6(mod 16) then I', is conjugate in S, to the direct product
T..2%XS;.
@DIft=3then [, ~T,3X8S;.

2. Preliminary lemmas

In order to prove Theorem A and Theorem B we shall need several lemmas,
which we prove in this section.

(2.1) Let n =4 and n#5, then y,>n’
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ProOF. For n =4 we have y, = |S.,| =24 hence y.>4>. For n = 6,7 clearly S,
contains S; { S, which is solvable of order 72, hence vy, > 6°and y,>7.Forn=8
we proceed by induction on n. Assume by induction that for any integer n, such
that 6 = n, < n we have vy, > ni. Since clearly S, contains the group I',_» X Sz,
which is a solvable group of order 2 y..., then by induction we have:

Yo Z29,2>2(n—2) =2n"—8n +8.

But it is easy to see that for all n =8 we have 2n’—8n +8>n’ hence we
conclude: vy, > n". [ |

(2.2) For all n 22 we have vy, > (1.4)".
Proor. If n is even, set n =2k. Then S, contains the direct product

S$iX 8§ X - XS,

k times

which is a solvable group of order 2“ Hence we have y, =2 =2"7> (1.4)",
If n is odd, set n =2k + 1. Then S, contains the direct product

S$3X 8§ X -+ X8,

k—1 times

which is solvable of order 6-2*"". Hence we have
‘Yn 26_2k~1=3‘2k >2k+l=2n+1/2>2n/2>(1.4)n‘ .
(2.3) For any n =3 we have v.(q —1)" > nq".

ProOOF. We remind the reader that we always assume q¢ =11. For 3=n =9
the assertion of (2.3) can easily be checked, noticing that ys = 24 (since S5 D S,),
YsZ 72 (since S¢D S:[S2), y,=144 (since $;D 8:XS;), ys=(24)2 (since
$:38.(8,) and .= 6" (since o S S5).

For n = 10, since g = 11 we have q/(q — 1) = 1.1. By (2.2) we have y, > (1.4)".
Hence the assertion of (2.3) follows from the inequality (1.4)" > n(1.1)", which
can easily be shown by induction. ]

(2.4) Let n=2. Assume that T, is a transitive subgroup of S,. Then we have
Vaul Y = 1277,

ProOOF. By (1.8) since I', is transitive we must have either n =2,3,6,9 or
n=4k where k=1. For n=2,3,6,9 the assertion of (2.4) can easily be
checked, using (1.8). For n =4k we have 2n = 8k, hence S, contains the group
I's { T which is clearly solvable of order ys- .. By (1.8) I', = S, [T',. Hence we
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have y2./¥. Z ¥5- v/v4- v« = y&/v4. But by (1.8) we have I's= S, [ S.. Hence
¥s = (24)’ - 2. Hence we have

Youl¥a = [(24) - 2]* /(24)" = 48* = 48"
Now since 48" > 12", we conclude ysn /v, = 12" -

(2.5) For any n=2 such that n#2(mod 4) or n=6(mod 16) we have
Yn ; 2%‘}/”—2-

PROOF. Set n =4k +1t, where k =0 and 0=t =3. We distinguish 4 cases
according as t =0,1,2,3 respectively.

Case 1. t =0
In this case n =4k = 4(k — 1)+ 4. Since clearly S, D (S [ I'-1) X S; we have
Yo Z|Sa f Tii| - |Ssl. Since ¥a—1 = a2 then by

(1.8) Va2 = Va1 = |Sef T || Ss].
Hence we have: y,/v.2 = |S.|/|S:|=4>25.

Case 2. t =1

In this case n =4k +1 =4k —1)+5 and n —2=4(k —1)+3.

Clearly we have y, = |S:[T«-i||Ss|. By (1.8) we have v, = |S:fT_i|-[Ss].
Hence we have: ¥,/y.—=|S.]/| S3|=4>23.

Case 3. t =2
By the assumption on n we have n = 6(mod 16). Set n =4k +2, then we must
have k = 1(mod 4). We distinguish 2 cases (@) and (B) as follows:

(a) k =9(mod 16) but k# 25(mod 64)
By (1.8) we have

| P SdJFk -~ SdJ(rk—‘)XI‘Q)~(s4IFk—9)X(SAIFQ)"’(SAJFk—Q)XF%-

Now since n = 4(k —9)+ 38 we clearly have v, = | S, [ [v-s| X |T'ss|. Hence by the
above and by (1.8) we have

Yl Yn-2Z Vasl Y36 = ’S4IS4I52",F{,I/IS4IFQI

=(24)°-2-2°-3%/(24)-2*- 3" = 24/9 = 23
as asserted.

(B) k#9(mod 16) or k =25(mod 64)
By (1.8) we must have '~ (S:fT«-1) X S;. But again by (1.8) we have
'y ~ (84 Tu_i) X T's. Hence we have v,/ya- =|Ts|/|Ss] = 72/24 =3>23.
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Case 4. t=3
In this case n =4k +3. We distinguish 2 cases («) and (B) as follows:

(a) n —2=9(mod 16) but n —2 # 25(mod 64)
By (1.8) we have ', ,~(S:f i) xT. But since 4k +3=4(k —2)+11 we
have v, =|S; [T« xT,.. Hence by (1.8) we have

Yl Va2 ZIT0 Y/|Ty| = (24) 2+ 6/6" =2 - 47+ 6'/6" = 32/6 > 23.

(B) n—2#9(mod 16) or n —2=25(mod 64)
By (1.8) we have I',_.~S,fI'x and I', ~(S;fT'«)X S:. Hence we have:
Yol Va2 =1S:] = 6>23. |

(2.6) Let p be a prime and let | = 1. Then we have
(o) For any q =13 the inequality (g —1)’"' > p™"' holds.
(B) For q =11 if p'#4 the inequality (@ —1)""'>p™"*' holds.

Proor. The proof follows easily by induction. |

(2.7) Let p be a prime and let 1 = 1. Let G be the symplectic group Sp(2l p).
Then we have |G| < p™*'

ProoF. The order of G is given by |G |=p"“1li.. (p™ — 1). Hence
{
|G |< pl- L‘[] p:. — pl»p\.{,ﬁx:. - p1»+1(1+|) — p21~+l. -

(2.8) Let p be a prime, | =1 and let n = p'. Then we have:
(o) For q > 13 the inequality v.(q —1)" > n’(q — 1)‘Sp(2l,p)| holds.
(B) For q = 11,13 the inequality v,q" > n’(q —1)|Sp (2. p)| holds.

Prook. For n =2,3,4,5 it is easy to check that (a) and (8) hold, noticing
that ys=24

For n > 5 we have by (2.6) (¢ — 1)""' > p***' and by (2.1) we have vy, > n’. By
(2.7) we have [Sp(2l,p)|< p>"*'. Consequently we have

Yalg —1)" = va(g = (g~ 1" > n(qg - Dp™*' > n’(qg - 1)ISp2Lp)|
forallg = 11. [ |
(2.9) Let p be a prime, | Z1 and let n = p'. Then we have
¥q" > n’(q —D)ISp2Lp)

PrOOF. (2.9)is an immediate consequence of (2.8). |

, forallg=11.
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3. Proofs of Theorem A and Theorem B

THEOREM A. Denote by b(n,q) the maximal possible order of a solvable,
completely reducible subgroup of GL(n,A). Then we have b(n,q)= v.q", for all
nzl.

ProOF. Let R be a solvable, completely reducible subgroup of GL(n, A).
The proof of the theorem is by induction on n. For n =1 the assertion of the
theorem is trivial. Assume now that n =2 and that the assertion of the theorem
holds for every n; < n. We distinguish 3 cases according as R is primitive,
imprimitive and reducible respectively.

Case A. R = M is primitive

Clearly we may assume that M is a maximal primitive solvable subgroup of
GL(n, A). We shall use in Case A the notations introduced in Chapter 1. We
distinguish 2 cases according as m =1 and m > 1 respectively.

Case 1. m =1

We shall show that in this case the assertion of the theorem is a consequence
of (2.9).

Let n = pi‘ . p? = -pif be a prime factorization of n (where p;# p;, for i#j,
1=1i j=k). Since m =1 we have here, by the definition of m, K = E, - A, and
by (1.2) F = K* = E, - A*. Moreover we have V=M and by (1.3) [A:F]=n’
(since here r = n). By (1.4) we have

M:A)=(v:Al=]]15pChp)l
Hence with the aid of (1.1) we get
M1z AT LA F)-1FI= (]IS0 p)]) 7 (g =,
But since n’ = (py')’- (p=)F - - (i) and since (g — 1)=(q — 1)* we have
(I1sp@.m)1)na =D =TT @ (g~ DIsphep).
So we conclude
6. M= ]G] - DIsp@hp)l

Now S, contains the direct product T XT3 X --- Ik (since
nz pi‘ + o+ p:f) which is a solvable group of order I}, A Hence we have
¥y
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k
Lo 4 )
_ann = ynqﬂy tpit A= I ll -yp,l’ q(p/)‘
i=

So we conclude

k ,
(3.2) vq" =[] v, q6)

It is clear now by (3.1) and (3.2) that case 1 is an immediate consequence of
(2.9).

Case 2. m>1

Since r = n/m we have here r < n. By (1.5) we have VCGL(r,K) and V is
solvable and irreducible. Hence by induction, since |K|=q", we have |V |=
v.(q™) = v4q". Now lM|—[M V]I V. By (1.6) we have [M: V] = m, conse-
quently |M|=myq". We shall show now that y, = my,. Since n=m-r it
follows that S, contains the direct product

[‘rxl'"x...xl"'

moHmes

which is a solvable group of order y;". Hence we have y, = y/". If r > 1 then in
order to show the inequality vy, = my, it suffices to show the inequality y;" = my,,
i.e. /"' = m. Since r > 1 we have vy, =2, hence clearly y" '=m. If r =1 then
m = n and the inequality vy, = my, takes the form v, = n which is trivially true.
Consequently we have y, Zmy, and we conclude y.q" Zmyq" Z|R| as
asserted.

Case B. R is imprimitive

By the definition of imprimitivity of a linear group and by the definition of the
wreath product of a linear group and a permutation group we clearly may
assume the following; There exists a factorization n = n, - n, with n, < n. There
exist a solvable, irreducible subgroup H, C GL(n,,A) and a (transitive) solvable
subgroup I'C S,,, such that R is contained in H,[I'. By induction we have
|Hi|= y.,q™. Hence by the definition of a wreath product we have

[R|=|HJT|=H[¥[|= v, g™ |T[=y.[T[-q"

We shall show that Vo = =y, T Clearly S, contains the group I, [T which is
solvable of order v, -|T'|. Hence v, = v.:-|T|. So we conclude y.q" = [R]|.

Case C. R is reducible
Since R is completely reducible it follows by the definition of complete
reduciblitiy that there exist an integer ¢ > 1 and integers n, =1, 1 =i = with
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2i-1nm: = n, such that R is conjugate in GL(n,A) to the group H, X Hy X - -+ X
H,. Here H; is a solvable, irreducible subgroup of GL(n;,A), 1 =i = t. Hence by
induction we have

!RI=HIH Iéﬂyn..q"‘ = (Hv)q

But clearly S. contains the direct product I', XI',, X --- XT,, hence vy, =
It~ v.,. Consequently y,q" = |R |. [ |

PrROPOSITION 3.1. Let R CGL(n,A) be a solvable, completely reducible sub-
group of order b(n, q), where q >13. If n >2 then R is not primitive.

Proor. Note that GL(n,A) contains the subgroup A* (I, which is by
definition solvable and completely reducible of order vy.(q —1)". Hence b(n,q) =
v.(q —1)". We shall show that if R is primitive then we must have |R|<
v.(qg —1)". Assume now that R =M is primitive. We distinguish 3 cases
according as m =1, 1<m <n and m = n respectively. (Again we use the
notation introduced in Section 1.)

Case 1. m =1
In this case we derive that |R | < y,(q —1)" exactly in the same way as in the
proof of subcase 1 of case A in the proof of Theorem A, using (2.8(a)).

Case 2.2=m<n

Like in the proof of subcase 2 of case A, in the proof of Theorem A we have
|R|=myq". Hence we must show that y.(q —1)" > myq". Now clearly S,
contains the wreath product T, [I",, which is a solvable group of order v/ yn.
Hence v, Z vy and it suffices to show that yy.(q —1)" > myq". But it is
easy to see that y, = m for all m. Hence it suffices to show that y(q —1)" >
v.q". This last inequality is equivalent to the inequality

()

Now since 2= m < n we have 2=r = n/2. Hence by (2.2) we have
yrU S (LAY > (LY = (LY = (L)

But since g > 13 we have q/(q —1)=1.1. Hence we have

m—1 n g "
yrl>(1.1) 2(q_1>.
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Case 3. m=n
Like in the proof of subcase 2 of case A, in the proof of Theorem A we have
IR | = nq". Hence by (2.3) we have v,(q —1)" > nq" 2| R |. [ |

PropoSITION 3.2. Let n>1. Assume that T, is transitive. Let R,,R.C
GL.(2n,A) be subgroups defined by: R, = G, [T, and R.=A*{T,. Then for
|Al=q > 13 we have |R,|<|R:

ProoF. Recall that G, is defined in (1.7). Clearly |R| =[2(¢°—1)]" - v» and
|R,| =(q — 1)"y2.. Hence we must show (g — 1)**y2, > [2(¢” — D]"y.. The last
inequality is equivalent to the inequality

Yf> [2(q + i(g - DI

But since g > 13 we have g = 16 and it is easy to check that for g = 16 we have
2(q + 1)/(g —1)< 12'”. Hence by (2.4) we have

3’;—"; 12"? > [2(q + Di(g — D]". n

ProrosiTiON 3.3. Let R CGL(2,A) be a solvable, completely reducible sub-
group of order b(2, q), where |A| = q = 13. Then R is conjugate in GL(2, A) to the
group G;,.

Proor. If R is reducible, then clearly R =(q —1)°. Hence the assertion of
Proposition 3.3 is an easy consequence of (1.7). |

ProrosITION 3.4. Let R CGL(n,A) be a solvable, completely reducible sub-
group of order b(n,q), where ¢ > 13 and n>2. If R is irreducible then R is
conjugate in GL(n,A) to A*[T,.

Proor. By Proposition 3.1 R is not primitive. Hence clearly there exist a
factorization n =1[-k such that R =M [I" where M is a primitive solvable
subgroup of GL(I,A) of order b(l,q), and I is a solvable subgroup of maximal
order in S,. By Proposition 3.1 we must have either / =1 or | =2. Hence we
must have either n =2-k and R = H [T where HCGL(2,4) is a solvable
completely reducible subgroup of order b(2, q) and I' is a solvable subgroup of S,
of order vy, or R = A* [I" where I" is a solvable subgroup of S, of order y.. By
Proposition 3.3 and by (1.8) we clearly have that R is conjugate in GL(n, A) to
G, [T« (n =2k) or R is conjugate in GL(n,A) to A* [T',,. Now if n =2k and
R ~ G2 J I'« then clearly since R is irreducible I'y must be a transitive subgroup
of Si. But then by Proposition 3.2 we have [A* [T, |>|G.,,[T«]| (k >1 since
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n >2) which is a contradiction to the definition of R. Hence we must have
R ~ A* [T, as asserted. ]

THEOREM B."  Let R CGL(n,A) be a solvable, completely reducible subgroup
of order b(n,q), where |A|=q > 13 and n=1. Then the following assertion
holds:

(a) If n#2(mod 4) or n =6(mod 16) then we have R ~ A*(T,.

(B) If n =2(mod 4) but n# 6(mod 16) then we have R ~ G., X (A* [ T,-,).

Proor. If R is irreducible then if n =2 Theorem B is a consequence of
Proposition 3.3. If n >2 then by Proposition 3.4 R ~A*{I',. But since R is
irreducible I', must be transitive, hence by (1.8) n =3,6,9 or n =4k where
k = 1. Hence clearly the assertion of Theorem B holds in this case.

If R is reducible, then clearly R is conjugate in GL(n,A) to the group
H X H,x --- X H,, where H; C GL(n;, A) is a solvable irreducible subgroup of
order b(ni,q), for 1=i=t and n =3, n; where n, =1 for 1=i =1t Now by
Proposition 3.1 either n; =2 and H; is conjugate in GL(n;,A) to G,,, or H; is
conjugate in GL(n;,A) to A* T, If there were 1<, j=1 with i# j such that
H; ~ G,; and H; ~ G, then clearly we can assume without loss of generality
that i =1 and j = 2. But then we could replace H, X H, by A* [T, in the group
H,x H,X --- X H, to obtain a solvable, completely reducible subgroup of order
larger than R (since |G,,[° < (q —1)*-24). Hence we reach a contradiction. By
the above remark we clearly may assume that either H, is conjugate in GL(2, A)
to G,, and H; is conjugate in GL(n;,A) to A*[I,, for 2=i=t or H is
conjugate in GL(n;,A) to A* [T, for all 1 =i = ¢ In the first case H; X - -+ X H,
is conjugate in GL(n,+ ns+ - -+ + n, A)to (A* f[,) X (A* [T, )X -+ X (A*[T,,)
which is clearly conjugate in GL(n.+n;+ -+ + n,A) to A*[ (I, X, X -+ X
I',,). By the definition of R we clearly must have I',, X, X -+ XTI, is
conjugate in ., +n+en, t0 Fayenyein,. Similarly in the second case R is conjugate
in GL(n,A) to A* [T... Hence we conclude that either R ~ G,, X (A*(T.-;) or
R ~A*(T,.

If n##2(mod 4) or n =6(mod 16) then by (2.5) we have:

A [T l=(@ - 1'% 2@ -1 2B%2=2@ - 1)@~ D)"Y

and |G, X (A* [T.25)| =] G22/(g — 1) *¥.-2. Since it is easy to check that for
q > 13 we have 23(q — 1)’ > | G| we conclude:

(a) If n#2(mod 4) or n =6(mod 16) then R ~A*[T,.

"The assertion of Theorem B fails to be true for q =13 since for g =13, |G,, ] S,|>|A* [T, |.
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Now if n =2(mod 4) but n# 6(mod 16), then by (1.8) I', ~I',_. X S,. Hence
clearly A* (T, ~(A* [T,_,) X (A*[S,). But

[G22 X (A" T o) [ = [A* [Tuss || G

and it is easy to check that for ¢ > 13 |G,

>|A*[S,| and we conclude:

(B)1If n = 2(mod 4) but nZ 6(mod 16) then R ~ G, X (A* [ T,_,). ]

4. Added remarks
The proofs for all the propositions below can be found in [3].
4.1 b(n,q)=q*""/24"  foralln=1

where a(q) is defined as follows:
(i) Forg=8or g=11

a(q)=(3log(q — 1) +1log24)/31log q.
(ii) For ¢ =3,5,7,9
a(q)=(3log(q —1)+4log24)/6logq.
(ii) a(4)=2/3+%log3.
(iv) a(2)=1+3log, 3.

Note that (4.1)(i) is a slight improvement of (0.1) of the Introduction.

We mention that it is easy to see that a(q) is a monotonic decreasing function
of g for ¢ =11, and lim,.. a(q) = 1.

The following table gives upper bounds for a(q) where ¢ =2,3,4,5,7,8,9,11;
the data are accurate up to two decimal digits.

q 2 3 4 S 7 8 9 i1

a(q) 2056 2244 1812 1.747 1.5491 1.446 1.438 1.402

(4.2) The bounds given for b(n, ) in (4.1) are the best in the following sense:
It b(n,q)=D-q°®" for all n =1, then we have 8(q)Z a(q), and if (q)=
a(q) then D =1/24'",

(4.3) Let R C GL(n, A) be a solvable, completely reducible subgroup of order
b(n,3) (here |A|=3). Then we have:
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(i) If n =2k is even, then R ~GL(2,A) [ I'..

(i) If n =2k +1 is odd, then R ~(GL(2,A) [ T'\) x A*.

We mention that for |A| = 11 the solvable, completely reducible subgroups of
GL(n,A) of order b(n,11) do not form a single conjugacy class. Indeed the
groups G, and G, which are contained in GL(2, A) and are introduced in (1.7)
have the same order, 240, and are not conjugate in GL(2, A). (It is easy to see
that b(2,11)=240.) For |A|=7, GL(3,A) possesses at least two conjugacy
classes of solvable, completely reducible subgroups of order b(3,7) which are the
following: the primitive solvable subgroups of order 6° (see {4], thm. 6, pp. 167)
and the subgroups conjugate to A*[S; whose order is also 6'. For |A|=
2,4,5,8,9,13 we do not know whether the solvable, completely reducible
subgroups of order b(n,q) form a unique conjugacy class.
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