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ABSTRACT 

Let A be a finite field and denote by GL(n, A) the group of n x n nonsingular 
matrices defined over A. Let R C_ GL(n, A} be a solvable, completely reducible 
subgroup of maximal order. For I~l --> 2, l al ~ 3 we give bounds for I R I which 
improve previous ones. Moreover for [At= 3 or [AI> 13 we determine the 
structure of R, in particular we show that R is unique, up to conjugacy. 

0. Introduction 

Let  A be a finite field of o r d e r  q. D e n o t e  by G L ( n , A )  the  g r o u p  of n x n 

nons ingu la r  mat r ices  def ined  over  A. In this p a p e r  we are  c o n c e r n e d  with 

solvable ,  c o m p l e t e l y  reduc ib le  subgroups  of G L ( n , A ) .  D e n o t e  by  b(n, q) the  

maximal  poss ib le  o r d e r  of a so lvable ,  c o m p l e t e l y  reduc ib le  s u b g r o u p  of 

G L ( n , A ) .  T. R. Wol f  ([5], thm. 3, p. 1 1 0 8 ) s h o w e d  that  b(n,q)<q°+~l"/241/3 

where  6/5 < / 3  < 5/4, for  all q => 2 and n => 1. W e  shall  i m p r o v e  this b o u n d  for  all 

q - - -2 ,  q ~  3 and  n => 1. M o r e o v e r ,  we shall  d e t e r m i n e ,  up  to con jugacy ,  the  

s t ruc ture  of a so lvable ,  c o m p l e t e l y  r educ ib le  subg roup  of G L ( n , A )  of o r d e r  

b(n, q), for q > 13 and n -> 1. In fact,  we shall  show the fol lowing:  Le t  S,  be  the  

symmet r i c  g r o u p  on n le t ters .  D e n o t e  by 7, the  max ima l  poss ib le  o r d e r  of a 

so lvable  s u b g r o u p  of S,.  Then  we have  the fo l lowing t h e o r e m :  

THEOREM A.** Denote by b(n,q)  the maximal possible order of a solvable, 
completely reducible subgroup of G L  (n, A), where A is a finite field of order q and 

q >= 11. Then 
b ( n, q ) <= 7,q " [or all n >= l , 

t This work is part of a Ph.D. thesis done at the Hebrew University under the supervision of 
Professor A. Mann. 

tt The assertion of Theorem A is in fact true for q => 8 also. The proof for that can be found in 13]. 
See also Section 4 at the end of the paper. 
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Dixon ([1], thin. 3, p. 418) showed that % =< a "-z where a = 24 ~/3. If we set 

[3(q) = logqa for all q => 11, then clearly q~tq) = a. Hence, we have the following 

Corollary: 

COROLLARY. Let A and b(n,q) be as in Theorem A. Then: 

(0.1) b(n, q)<= q~l+~q))"/24~/3 foralln >= 1. 

Since 0 < [3(q)< ~ and l imq~ [3(q)= 0, the bound given in (0.1)is indeed an 

improvement of the bound given in [5] for all q _-> 11 and n _-> 1. 

We shall also prove the following theorem: 

THEOREM B. Let A be a finite field of order q, where q > 13 and let A* be the 
multiplicative group of A. Let R CGL(n ,A)  be a solvable, completely reducible 
subgroup of order b(n, q), where n >= 1. Then there exists a solvable subgroup 

F. C_ S, of maximal order, a solvable subgroup F, 2 C S,-2 of maximal order, and a 
solvable irreducible subgroup H C_ GL(2,  A) of maximal order such that: 

(a) l f  n /  2(mod 4) or n - 6(mod 16), then R is conjugate in GL(n,A)  to the 

wreath product A* f F,.  
([3) If  n -~ 2(mod 4) but n~  6(rood 16), then R is conjugate in GL(n,A)  to the 

direct product H x (A* J F,-2). 

A. Mann ([2]) showed that all solvable subgroups of maximal order in S, form 

a conjugacy class of subgroups in S,. D. A. Suprunenko ([4], thin. 6, p. 167) 

determined up to conjugacy all maximal, irreducible, solvable subgroups of 

GL(2, A). Hence, as a corollary we shall show: 

COROLLARY. If  A is a finite field of order q and q > 13, then the set of all 

solvable, completely reducible subgroups of GL(n,A),  of order b(n,q), form a 
conjugacy class of subgroups in GL(n,  A), for all n >= 1. 

1. Preliminaries and notations 

Throughout this paper the following notations will be used: 

(a) A shall denote a finite field and q shall denote its order. We denote by A* 

the multiplicative group of A. 
(b) We shall fix a solvable subgroup of maximal order in S, and denote it by 

F,.  We denote the order of F, by 7,- 
(c) Let P1~CS,,, F~2)CS,~ . . . . .  F~')C S,, be subgroups. Set n = E'~=~ ni. By the 

direct product F°)× F~2) x " "  × F t') we mean the subgroup of S, acting on the 
set of indices {1,2 . . . . .  n~} like F tl) does . . . . .  and acting on the set indices 
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{E~-,' n, + 1,E~-~ t ni +2  . . . . .  E~=~ ni} like D k' does on {1 . . . . .  nk} respectively, 
where 2 -<_ k -_< r 

(d) Let Hi C GL(ni, A) be subgroups for l<=i<=t. By the direct product 

H, × H: x • • • × H, we mean the subgroup of GL(n,  A) consisting of all matrices 

of the form diag(h~,h2 . . . . .  h,) where hi E Hi for 1_-< i _-< t and n = El , ni. 

(e) The maximal order of a solvable, completely reducible subgroup of 

GL(n,A) shall be denoted by b(n,q). 

(f) Let G be a group and let G t , G 2 C G  be subgroups. We shall write 

G~ -c,, G2 to denote that G, and G2 are conjugate subgroups in G. If the group G 

is understood from the context we shall merely write G I -  Ge. 

From now on we shall assume q ~ 11 and we mention that all numerical 
variables in this paper shall be integer variables. 

This paper extensively uses the following concepts: 

(1) The wreath product of permutation groups (see [4], p. 11). If F ' C &  and 

F"C S, are subgroups, then from now on F'J ~ F" shall denote the wreath product 

of F' and F" which is a subgroup of S,.,. 

(2) The wreath product of a linear group and a permutation group (see [4], p. 

106). If R C GL(n, A) is a linear group and F C S, is a permutation group then 

from now on R J~F shall denote the wreath product of R and F which is a 

subgroup of GL (n • t,A). 

(3) Primitivity and imprimitivity of linear groups (see [4], chapter 15, p. 103). 

The proof of Theorem A and Theorem B relies on results of D. A. 

Suprunenko [4] and A. Mann [2] which we state below. 

(1.1) ([4], p. 139). Let M be a maximal primitive solvable subgroup of 

GL(n,A), then M contains the following invariant series: 

( E , ) C F  CA C V CM 

where we fix the following notations: 

(1) M is a maximal primitive solvable subgroup of GL(n,  A). 

(2) E, is the identity element in GL(n,A). 

(3) F is a maximal abelian normal subgroup of M. 
(4) V is the centralizer of F in M. 

(5) A / F  is maximal among the subgroups of M / F  satisfying: 

(i) A / F  is an abelian normal subgroup of M/F. 
(ii) A / F  c_ V/F. 

(1.2) ([4], lemma 1, p. 129) F = K*, where K* is the multiplicative group of a 

field extension K of E , .  A and [ K : E , .  A] divides n. We fix the letter m to 

denote m = [K:E ,  • A] and we fix the letter r (like in [4]) to denote r = n/m. 
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(1.3) ([4], thm. 3, p. 141) [A :F] = r -~. 

l I I~ I k 
(1.4) ([4], thm. 15, p. 151) If r = p , p i " ' p k  is a prime factorization of r 

(where P ~ P i  for i ~ j ,  l<=i,j<=k). Then V / A  is isomorphic to a solvable 

subgroup of the direct product of k symplectic groups Sp(21,,pj), j -- 1 . . . . .  k. 

(1.5) ([4], thm. 1, p. 138) Since V centralizes F, V can be viewed as a subgroup 
of GL(r, K)  (where K is like in (1.2)) and we have: V is an absolutely irreducible 

subgroup of GL(r, K). 

(1.6) ([4], f o r .  1, p. 130) [M:  V] =< m. 

(1.7) ([4], thm. 6, p. 167) Every maximal irreducible solvable subgroup of 

GL(2, 4)  is conjugate in GL(2, A) to one of the following three subgroups: 

G2., of order 2 ( q -  1) 2, 

G2.2 of order 2(q 2 -  1), 

G2.3 of order 2 4 ( q -  1), 
where G2.~, G2,2 and G2.3 are as defined in ([4], chapter 19) and G2.3 exists iff 2 

does not divide q. We fix G2.2 to denote the subgroup mentioned above. 

(1.8) ([2]) Let n -> 1 be an integer. For convenience of notations denote by Fo 

the empty set, and for a permutation group F, FJ 'Fo= F0 and F o X F = F .  Let 

n = 4k + t where k _-> 0 and 0 =< t _-< 3. Then F, is conjugate in S. to the following 

t = 0 then F. - $4 J" Fk. 
t --- 1 then: 
If n -= 9(rood 16) but n ~ 25(rood 64) then F, is conjugate in S, to the 

direct product ($4 ~[ F~-2) x ($3 ~[ $3). 
(/3) If n / 9 ( r o o d  16) or n - 25(mod 64) then F, - F,-z x $1. 

(3) If t = 2 then: 
(a)  If n ~-6(mod 16) then F. is conjugate in S. to the direct product 

( s , f  1) × (s3I s2). 
(/3) If n # 6 ( m o d  16) then F. is conjugate in S. to the direct product 

F._2 × $2. 
(4) If t = 3 then F. - F.-3 × $3. 

group: 
(1) If 

(2) If 

2. Preliminary iemmas 

In order to prove Theorem A and Theorem B we shall need several lemmas, 

which we prove in this section. 

(2.1) Let n >-4 and n ~ 5 ,  then 3'. > n2 
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PROOF. For  n = 4 we have ')/4 = 1S4 t = 24 hence y4 > 4 ~-. For  n = 6, 7 clearly S, 

contains $3 ~ $2 which is solvable  of o rder  72, hence  y6 > 62 and 3'7 > 72. For  n _-> 8 

we p roceed  by induct ion on n. Assume  by induct ion that  for  any integer  nl such 

that  6 _-< n~ < n we have  y,, > n~. Since clearly S, contains  the group  F,-2 x $2, 

which is a solvable group  of o rder  2 y , -z ,  then by induction we have:  

y,  _->27, _~ > 2(n - 2 )  2 = 2 n 2 - 8 n  + 8 .  

But  it is easy to see that  for  all n _-> 8 we have  2 n 2 - S n  + 8 >  n 2 hence  we 

conclude:  3,, > n 2. • 

(2.2) For all n >= 2 we have y, > (1.4)". 

PROOF. If n is even,  set n = 2k. Then  S, contains  the direct  p roduc t  

S 2 x S 2 x . . .  x S 2 ,  
k times 

which is a solvable group  of o rder  2 k H e n c e  we have  y,  => 2 k = 2"/2> (1.4)". 

If n is odd,  set n = 2k + 1. Then  S. contains  the direct p roduc t  

$ 3  X $ 2  X " " " X $ 2 ,  
k - I  times 

which is solvable  of  o rde r  6 - 2  k-~. H e n c e  we have  

T- => 6" 2 ~-a = 3" 2 ~ > 2 ~+' = 2 "+1/2 > 2 "/2 > (1.4)". • 

(2.3) For any n >-_3 we have y , ( q  - 1 ) "  > nq ". 

PROOF. We  remind  the r eader  that  we always assume q -> 11. For  3 =< n =< 9 

the assert ion of (2.3) can easily be checked,  noticing that  y5 --> 24 (since $5 D S0,  

y6=>72 (since $6DS3IS2), 77_->144 (since S7DSaXS3), 7~_->(24)22 (since 

$8 D $4 J~ $2) and y~ => 64 (since $9 D $3 J" $3). 

For  n _>- 10, since q => 11 we have  q/(q  - 1 ) =  < 1.1. By (2.2) we have  3,, > (1.4)". 

H e n c e  the assert ion of (2.3) follows f rom the inequal i ty  (1.4)" > n(1.1)", which 

can easily be  shown by induction.  • 

(2.4) Let  n >= 2. A s s u m e  that F,  is a transitive subgroup of  S..  Then we have 
y z . / %  >= 12 "/3- 

PROOF. By (1.8) since F,  is t ransit ive we must  have  e i ther  n = 2 , 3 , 6 , 9  or  

n = 4 k  where  k_-> 1. For  n = 2 , 3 , 6 , 9  the asser t ion of (2.4) can easily be  

checked,  using (1.8). For  n = 4k we have  2n = 8k, hence  $2, contains  the g roup  

Fs IFk  which is clearly solvable  of o rder  y~- y~. By (1.8) F.  = S,J~Fk. H e n c e  we 
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k k have 3'2,/3', => y~" Yk/3"k4 " 3"k = 3"8/y4. But by (1.8) we have F8 = $4 ~ $2. Hence  

3'8 = (24) 2. 2. Hence  we have 

3"2./y. >= [(24) 2. 2]k/(24) k = 48 k = 48 "/`. 

Now since 481~' > 121/3, we conclude yz . /y .  > 12 "/3. • 

(2.5) For any n>=2 such that n ~ 2 ( m o d  4) or n - ~ 6 ( m o d  16) we have 

y.  =>237,-2. 

PROOF. Set n = 4k + t, where  k _---0 and 0 =< t = 3. We distinguish 4 cases 

according as t = 0, 1,2, 3 respectively.  

Case 1. t = 0 

In this case n = 4k = 4(k - 1) + 4. Since clearly S. D ($4 J" Fk-~) x $4 we have 

3'n g I $4 / Fk-I ]" [$4 [, Since 3'._1 => 3'.-2 then by 

(1.8) 3'.-2 =< y.-1 = [S4~ Fk-1 l" IS3[. 

Hence  we have: 3',/3',_2= > IS,[~IS31 = 4 >  23. 

Case 2. t = 1 

In this case n = 4 k + l = 4 ( k - 1 ) + 5 a n d  n - 2 = 4 ( k - 1 ) + 3 .  

Clearly we have 3'. > [S4J'F~_,I'IS41. By (1.8) we have 3'._2 = [s ,~r~- , l . l s31 .  

Hence  we have: 3".13"._2 = [s411[s31=4>2~. 

Case 3. t = 2 

By the assumption on n we have n - 6(mod 16). Set n = 4k + 2, then we must 

have k =- l (mod  4). We distinguish 2 cases ( a )  and (/3) as follows: 

( a )  k -= 9(mod 16) but  k ~ 25(mod 64) 

By (1.8) we have 

F,-z  ~ S , ; F k  - S, ; (Fk-9 × I"9) -- ($4 ~ ['k-9) × (S, ~ F g ) -  ($4 ; r~-~) x r36. 

Now since n = 4(k - 9) + 38 we clearly have 7. --> ]$4 ~ Fk-9 [ × ]F~ [. Hence  by the 

above  and by (1.8) we have 

3"n/3"n-2 => 3'38/3'36 = [ S4 I S4 [ S2l " [r~l/Is~ ~ r, l  

= (24) 1°. 2.23.  3z/(24) 9- 2'-  3' = 24/9 = 22 

as asserted. 

(/3) k # 9 ( m o d  16) or k - 2 5 ( m o d  64) 

By (1.8) we must have F . - 2 ~ ( S 4 ~ F ~ - t ) × S 4 .  But again by (1.8) we have 

Fn ~ ($4 J" I~k-l) X f'6. Hence  we have 3",/3",-2 = ]F6 ]/IS4 ]= 72/24 = 3 > 2-~. 
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Case 4. t = 3 

In this case n --=4k +3 .  We distinguish 2 cases ( a )  and (/3) as follows: 

( a )  n - 2 - 9 ( r o o d  1 6 ) b u t  n - 2 ~  25(mod 64) 

By (1.8) we have F,_: - ($4 J" Fk-_~) × F~. But since 4k + 3 = 4(k - 2) + 11 we 

have y, >= Is, frk_21xr,,. Hence  by (1.8) we have 

y . /y , -2  = 1V,, t/IF~, ] = (24):. 2.6/64 = 2 .42 .  63/6 ' = 32/6 > 23. 

(/3) n - 2 ~ 9 ( m o d  16) or  n - 2 - = 2 5 ( r o o d  64) 

By (1.8) we have F . _ 2 - S 4 / ' F k  and F , - ( S 4 J ' F k ) × S 3 .  Hence  we have: 

3'./3',-2 = 1S3] = 6 > 2 ~ .  • 

(2.6) Let p be a prime and let l >= 1. Then we have 

(a )  For any q >= 13 the inequality (q - 1) p' ~ > p_-~-+t holds. 

(/3) For q = 11 if p ~ 4  the inequality (q - 1) p"~ > p2r-+t holds. 

PROOF. The  proof  follows easily by induction. • 

(2.7) Let p be a prime and let l>= 1. Let  G be the symplectic group Sp(21, p).  

Then we have I G I < p2t:, .  

PROOF. The  order  of G is given by I G I = ~-~ p II,=~ (p'-' - 1). Hence  

l 

IG l< p,'- l - I p  2, = p,'p'-'F, ~-' = p,'~+,,~,,= p2,'~+, • 
i = l  

(2.8) Let p be a prime, l >= 1 and let n = p~. Then we have: 

(e~) For q > 13 the inequality y . (q  - 1)" > n2(q - 1) ]Sp(2l, p)] holds. 

(/3) For q = 11, 13 the inequality r.q° > n 2 ( q -  1)]Sp(21,p)l holds. 

PROOF. For  n = 2 , 3 , 4 , 5  it is easy to check that ( a )  and (/3) hold, noticing 

that y.~ = 24 
For  n > 5 we have by (2.6) (q - 1) "-~ > p2~-'+~ and by (2.1) we have 3'. > n 2. By 

212+1 (2.7) we have I Sp (21 ,p ) [<p  . Consequent ly  we have 

3',(q - 1)" = y°(q - 1)(q - 1)"-' > n:(q - 1)p -'''+t > n2(q - 1) lSp(Zl .p)I  

for  all q _-> 11. • 

(2.9) Let p be a prime, l >= 1 and let n = pt. Then we have 

y ,q"  > n2(q - 1) lSp(2 / ,p )  J, f o r a l l q  >-_ 11. 

PROOF. (2.9) is an immedia te  consequence  of (2.8). • 
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3. Proofs of Theorem A and Theorem B 

THEOREM A. Denote by b(n ,q)  the maximal possible order of a solvable, 
completely reducible subgroup of GL(n,  A). Then we have b(n, q) < y, q n for all 
n>=l. 

PROOF. Let R he a solvable, completely reducible subgroup of GL(n,A).  

The proof of the theorem is by induction on n. For n = 1 the assertion of the 

theorem is trivial. Assume now that n => 2 and that the assertion of the theorem 

holds for every n~ < n. We distinguish 3 cases according as R is primitive, 

imprimitive and reducible respectively. 

Case A. R = M is primitive 
Clearly we may assume that M is a maximal primitive solvable subgroup of 

GL(n, A). We shall use in Case A the notations introduced in Chapter  1. We 

distinguish 2 cases according as m = 1 and m > 1 respectively. 

Case 1. m = 1 
We shall show that in this case the assertion of the theorem is a consequence 

of (2.9). 
I I 12 I k 

Let n = p~ " p 2 " " p k  be a prime factorization of n (where p ~  pj, for i~] ,  
1 =< i, ] ~ k). Since m = 1 we have here, by the definition of m, K = E, • 2~, and 

by (1.2) F = K* = E, • A*. Moreover we have V = M and by (1.3) [A :F]  = n z 

(since here r = n). By (1.4) we have 
k 

[ M : A ]  = [ V : A ] =  < I-I ISp(2lj,pJ)I. 
i 1 

Hence with the aid of (1.1) we get 

IMI<=[M :A  ] . [A  : F ] . I F I =  < (I-] ISp(21;,Pi) l) .n2.(q -1 ) .  
/ = 1  

But since n 2= (ptl') 2" ( p ~ f - ' "  (p~)2 and since ( q -  1) -< _ ( q -  1) k we have 

,=, iSp(2lj,pj)[ n2(q _ 1)_< j=i~ (p))2(q _ 1)lSp(2lj, pj)l" 

So we conclude 

k 

(3.1) I M} <-- ['I (P))'-(q - 1)tSp (2lj, p,)I. 
i = 1  

Now S, contains the direct product Fp', ×Fp~ x . - .  x Fp~ (since 
11 I k • . n > p, + . . "  + pk ) which ts a solvable group of order II2=, 7p~ • Hence we have 
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I k 

~' " "+eke> 1-[ Y"q" >- Y"qP'+ P:-+ = Ye;' q6'/). 
/ = 1  

So we conclude 

k 

(3.2) Y,q" >= 1-I Ye'; q(p'/)" 
j = l  

It is clear now by (3.1) and (3.2) that case I is an immedia te  consequence  of 

(2.9). 

Case ,,. "~ m > 1 

Since r = n/m we have here  r < n. By (1.5) we have V G G L ( r , K )  and V is 

solvable and irreducible.  Hence  by induction,  since I KI= q" ,  we have I V ] _  <- 

"y,(q')' = y,q". Now [ M [ =  [M" V]I Vi. By (1.6) we have [M" V ] ~  m, conse- 

quent ly  ]M[_-<_ myrq". We shall show now that y, >= my,. Since n = m . r  it 

follows that S. contains the direct product  

I ' ,  x [ ' ,  x - . .  x F ,  
,1.1 t h n c s  

which is a solvable group of order  YT. Hence  we have y,, >= 77. If r > l then in 

order  to show the inequali ty y, ->_ myr it suffices to show the inequali ty y~" => myr, 

i.e. YT-" >= m. Since r > 1 we have 7, > 2, hence clearly y7 ' >- m. If r = 1 then 

m -- n and the inequali ty y, >= myr takes the form y, => n which is trivially true. 

Consequent ly  we have y, >= my, and we conclude y,q">= my,q">= !R] as 

asserted. 

Case B. R is imprimitive 

By the definition of imprimitivity of a linear group and by the definition of the 

wreath product  of a linear group and a permuta t ion  group we clearly may 

assume the following; There  exists a factorizat ion n = n~. n2 with n, < n. There  

exist a solvable, irreducible subgroup H,  _C G L  (n~, A) and a (transitive) solvable 

subgroup F C_ S,:, such that R is contained in H~J'F. By induction we have 

I H~I_- < y,, q",. Hence  by the definit ion of a wreath product  we have 

IR I~ pH, f r l  = IH, b l r l  ~ v~.  q°' °~. Irl = v~,lr l .q  °. 

We shall show that y. ~ -y~. IF]. Clearly S. contains the group F.,]F which is 

solvable of o rder  V".~, • Irl .  Hence  y, _-> y2-~, • Ir l .  So we conclude y,q" >= [R ]. 

Case C. R is reducible 

Since R is comple te ly  reducible it follows by the definit ion of comple te  

reduciblit iy that there  exist an integer  t > 1 and integers ni => 1, 1 =< i _-< t with 
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El=~ ni = n, such that R is conjugate in G L ( n , A ) t o  the group H, × Hz × " '"  × 

H,. Here ~ is a solvable, irreducible subgroup of GL(ni,  A), 1 < i _--< t. Hence by 

induction we have 

But clearly S. contains the direct product F., × F.2× "'" × F.,, hence 3'. => 

IIl=t 3',,. Consequently y,q" >-_ [ R 1. • 

PROPOSrrIoN 3.1. Let R C GL(n,  A) be a solvable, completely reducible sub- 

group of order b(n ,q) ,  where q > 13. I f  n > 2 then R is not primitive. 

PROOF. Note that GL(n ,A)  contains the subgroup A*JF.  which is by 

definition solvable and completely reducible of order 3,, (q - 1)". Hence b (n, q) => 

y , ( q - 1 ) " .  We shall show that if R is primitive then we must have IR l<  

y . ( q - 1 ) " .  Assume now that R = M is primitive. We distinguish 3 cases 

according as m = l ,  l < m < n  and m = n  respectively. (Again we use the 

notation introduced in Section 1.) 

Case 1. m = 1 

In this case we derive that t R I < T, (q - 1)" exactly in the same way as in the 

proof of subcase 1 of case A in the proof of Theorem A, using (2.8(a)). 

Case 2. 2<=m < n 

Like in the proof of subcase 2 of case A, in the proof of Theorem A we have 

IR [<=my, q". Hence we must show that y , ( q - 1 ) " > m y ~ l " .  Now clearly S, 

contains the wreath product F, J'F,, which is a solvable group of order yTy,,.  

Hence y, >= y,~ym and it suffices to show that yTy. ,(q - 1)" > my, q". But it is 

easy to see that y,, _-> m for all m. Hence it suffices to show that yT(q - 1)" > 

y,q". This last inequality is equivalent to the inequality 

r : ,  > ( _ _ q _ ) "  \ q  - 1 1  " 

Now since 2 =< m < n we have 2 <= r < n/2. Hence by (2.2) we have 

m , > ( 1 . 4 ) , , m - , ,  > (1 .1 )2 ,~ , . - , ,  = ( 1 . 1 ) 2 . - 2 ,  > (1 .1 )" .  "Yr = 

But since q > 13 we have q/(q - 1) =< 1.1. Hence we have 

._ ,  ° 
y, > (1.1) ~ > 

= \ q - l }  " 



Vol. 51, 1985 REDUCIBLE SOLVABLE SUBGROUPS 173 

Case 3. m = n 

Like in the proof of subcase 2 of case A, in the proof of Theorem A we have 

tR I <= nq". Hence by (2.3) we have y,(q - 1)" > nq" >= IR [. • 

PROPOSITION 3.2. Let n > 1. Assume that F, is transitive. Let R , , R 2 C  

GL(2n, A) be subgroups defined by: R, = G2.2JF, and Re=  A*J'F..°. Then for 

I A l = q > 1 3  wehave  ]RII<IR2t .  

PROOF. Recall that G2,2 is defined in (1.7). Clearly [R, I = [2(q 2 -  1)]" • y. and 

IR21 = ( q -  1)2"y2.. Hence we must show ( q -  1)Z"y_.. > [2(q- '-I)]"~..  The last 

inequality is equivalent to the inequality 

- ~  > [2(q + 1)/(q - 1)]". 
3,. 

But since q > 13 we have q _-> 16 and it is easy to check that for q => 16 we have 

2(q + 1)/(q - 1) < 12 I/3. Hence by (2.4) we have 

-~=> 12"/3> [2(q + 1)/(q - 1)]". • 
y, 

PROPOSITION 3.3. Let R CGL(2,A) be a solvable, completely reducible sub- 

group of order b (2, q ), where t A ] = q >-_ 13. Then R is conjugate in GL(2, A) to the 

group G2.2. 

PROOF. If R is reducible, then clearly R =< ( q -  1) 2. Hence the assertion of 

Proposition 3.3 is an easy consequence of (1.7). • 

PROPOSITION 3.4. Let R CGL(n,A)  be a solvable, completely reducible sub- 

group of order b(n, q), where q > 13 and n > 2. I f  R is irreducible then R is 

conjugate in GL(n,A) to A*JF, .  

PROOF. By Proposition 3.1 R is not primitive. Hence clearly there exist a 

factorization n = I .  k such that R = M JF  where M is a primitive solvable 

subgroup of GL(I, A) of order b(l, q), and F is a solvable subgroup of maximal 

order in &. By Proposition 3.1 we must have either l = 1 or l = 2. Hence we 

must have either n = 2 . k  and R = H J ' F  where HC_GL(2,  A) is a solvable 

completely reducible subgroup of order b (2, q) and F is a solvable subgroup of & 

of order yk, or R = A* j" F' where F' is a solvable subgroup of S, of order 3,,. By 

Proposition 3.3 and by (1.8) we clearly have that R is conjugate in GL(n,  A) to 

G2,2~Fk (n = 2 k )  or R is conjugate in GL(n, A) to A*/ 'F. .  Now if n = 2 k  and 

R - G2.2 J Fk then clearly since R is irreducible Fk must be a transitive subgroup 

of &. But then by Proposition 3.2 we have IA*J'F. l>  IGa,2~F~ [(k  > 1 since 
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n > 2) which is a contradiction to the definition of R. Hence we must have 

R - A* ~ F, as asserted. • 

THEOREM B.' Let R CGL(n ,A)  be a solvable, completely reducible subgroup 

of  order b (n ,q ) ,  where ]A I = q > 13 and n >- l. Then the following assertion 

holds : 

(~)  I f  n ¢  2(mod 4) or n -= 6(mod 16) then we have R - A*~F,. 

([3) I f  n =- 2(mod 4) but n i  6(mod 16) then we have R - G2,2 x (A* f F,-2). 

PROOF. If R is irreducible then if n = 2 Theorem B is a consequence of 

Proposition 3.3. If n > 2 then by Proposition 3.4 R - A * J F . .  But since R is 

irreducible F, must be transitive, hence by (1.8) n = 3,6,9 or n = 4k where 

k _-> 1. Hence clearly the assertion of Theorem B holds in this case. 

If R is reducible, then clearly R is conjugate in GL(n ,A)  to the group 

H, x H2 x • • • X / ' - / t ,  where ~ _C GL(ni,  A) is a solvable irreducible subgroup of 

order b ( n , q ) ,  for 1_-< i_-< t, and n = Z'i=l ni where ni => 1 for 1 =< i =< t. Now by 

Proposition 3.1 either ni = 2 and Hi is conjugate in G L ( n , A )  to G2.2, or H~ is 

conjugate in GL(ni,  A) to A* J'F,,. If there were 1 =< i , j  <- _ t with i / ]  such that 

Hi - G2.2 and ~ - G2.2 then clearly we can assume without loss of generality 

that i = 1 and j = 2. But then we could replace H~ x/42 by A* J" F4 in the group 

H, x H2 x • • • x H, to obtain a solvable, completely reducible subgroup of order 

larger than R (since [G2.2tz< ( q -  1) 4. 24). Hence we reach a contradiction. By 

the above remark we clearly may assume that either H1 is conjugate in GL(2,  A) 

to Ga2 and ~ is conjugate in GL(n~,A) to A*J'F,, for 2<-<_i<-t, or Hi is 

conjugate in GL(ni,  A) to A* IF,,  for all 1 < i =< t. In the first case/42 x -- .  x H, 

is conjugate in GL(n2 + n3 + " "  + n,, A) to (A* J" F,~) x (A* J" F,~) x . . .  x (A* J" F,, ) 

which is clearly conjugate in GL(n2 + n3 + " '" + n,, A) to A'J" (Fe x F,~ x ..- x 

F,,). By the definition of R we clearly must have F , ~ x F . , x . . .  xF . ,  is 

conjugate in S.~+ ......... to F ............ . Similarly in the second case R is conjugate 

in GL(n,  A) to A* J'F,. Hence we conclude that either R ~ G2.2 x (A* IF,-2) or 

R ~ A ' I F , .  

If n N 2(rood 4) or n ---6(rood 16) then by (2.5) we have: 

]A* J'F, 1= (q - 1)"3', => (q - 1)". 22 T._2 = 22(q - 1 ) 2 ( q  - 1 ) " - z a / , , _ 2 .  

and t G2,2 × (A* J F,-2) I = I Gz,2 I(q - 1)"-zy,_2. Since it is easy to check that for 

q > 13 we have 2 3 ( q -  1)2> IG2,21 we conclude: 

(~) If n ~ 2 ( m o d  4 ) o r  n =- 6(rood 16) then R ~A* IF, .  

'The assertion of Theorem B fails to be true for q < 13 since for q _-__ 13, IG2.2~S~[ > ]A*,[F, I. 
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Now if n -= 2(mod 4) but n ~ 6(mod 16), then by (1.8) F. - F.-2 × $2. Hence 

clearly 2~* ~ F, - (A* ~ F, z) x (A* J~ $2). But 

[G2.2x(A*II'n 2) 1 = [a*/r , , -21"lG:.21 

and it is easy to check that for q > 13 [G2.2[> IA*/S2I and we conclude: 

(/3) If n = 2(mod 4) but n ¢ 6(mod 16) then R ~ G2.2 X (A* I F, 2). • 

4. Added remarks 

The proofs for all the propositions below can be found in [3]. 

(4.1) b(n, q) <= q'~q~"/24 '/3 for all n => 1 

where a Iq) is defined as follows: 

(i) For q = 8 o r  q=>l l  

a (q) = (3 log(q - 1) + log 24)/3 log q. 

(ii) For q = 3, 5, 7, 9 

a (q) = (3 log(q - 1) + 4 log 24)/6 log q. 

(iii) a (4) = 2/3 + ~ log23. 

(iv) a (2) = 1 + ~ log23. 

Note that (4.1)0) is a slight improvement of (0.1) of the Introduction. 

We mention that it is easy to see that a (q) is a monotonic decreasing function 
of q for q => 11, and limq_~ a(q) = 1. 

The following table gives upper bounds for a (q) where q = 2, 3, 4, 5, 7, 8, 9, 11; 

the data are accurate up to two decimal digits. 

q 2 3 4 5 7 8 9 11 

a(q) 2.056 2.244 1.812 1.747 1.5491 1.446 1.438 1.402 

(4.2) The bounds given for b(n, q) in (4.1) are the best in the following sense: 

If b(n,q)<=D.qSm" for all n =1 ,  then we have 3(q)>=a(q), and if 6 ( q ) =  
a(q) then D => 1/24 m. 

(4.3) Let R _C GL(n, A) be a solvable, completely reducible subgroup of order 

b(n,3) (here la[ = 3). Then we have: 
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(i) If n = 2k is even, then R - GL(2, A) j" Fk. 

(ii) If n = 2 k  +1 is odd, then R - ( G L ( 2 ,  A)J'Fk)xA*. 

We mention that for [A] = 11 the solvable, completely reducible subgroups of 

GL(n,A) of order b(n, l l )  do not form a single conjugacy class. Indeed the 

groups G2.2 and G2.3 which are contained in GL(2, A) and are introduced in (1.7) 

have the same order, 240, and are not conjugate in GL(2, A). (It is easy to see 

that b(2,11)= 240.) For [A] =7,  GL(3,20 possesses at least two conjugacy 

classes of solvable, completely reducible subgroups of order b(3, 7) which are the 
following: the primitive solvable subgroups of order 6 ~ (see 14], thm. 6, pp. 167) 
and the subgroups conjugate to A*JS3 whose order is also 64. For [A[= 

2,4,5,8,9, 13 we do not know whether the solvable, completely reducible 

subgroups of order b(n, q) form a unique conjugacy class. 
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