ON COMPLETELY REDUCIBLE SOLVABLE SUBGROUPS OF $GL(n, \Delta)$

BY

YOAV SEGEV⁺ *Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel*

ABSTRACT

Let Δ be a finite field and denote by $GL(n, \Delta)$ the group of $n \times n$ nonsingular matrices defined over Δ . Let $R \subseteq GL(n, \Delta)$ be a solvable, completely reducible subgroup of maximal order. For $|\Delta| \geq 2$, $|\Delta| \neq 3$ we give bounds for $|R|$ which improve previous ones. Moreover for $|\Delta|= 3$ or $|\Delta|> 13$ we determine the structure of R , in particular we show that R is unique, up to conjugacy.

0. Introduction

Let Δ be a finite field of order q. Denote by $GL(n,\Delta)$ the group of $n \times n$ nonsingular matrices defined over Δ . In this paper we are concerned with solvable, completely reducible subgroups of $GL(n, \Delta)$. Denote by $b(n, q)$ the maximal possible order of a solvable, completely reducible subgroup of GL(n, Δ). T. R. Wolf ([5], thm. 3, p. 1108) showed that $b(n,q) \leq q^{(1+\beta)n}/24^{1/3}$ where $6/5 < \beta < 5/4$, for all $q \ge 2$ and $n \ge 1$. We shall improve this bound for all $q \ge 2$, $q \ne 3$ and $n \ge 1$. Moreover, we shall determine, up to conjugacy, the structure of a solvable, completely reducible subgroup of $GL(n, \Delta)$ of order $b(n, q)$, for $q > 13$ and $n \ge 1$. In fact, we shall show the following: Let S_n be the symmetric group on *n* letters. Denote by γ_n the maximal possible order of a solvable subgroup of S_n . Then we have the following theorem:

THEOREM A^{+t} *Denote by b(n, q) the maximal possible order of a solvable, completely reducible subgroup of GL* (n, Δ) , where Δ is a finite field of order q and $q \ge 11$. Then

 $b(n, q) \leq \gamma_n q^n$ for all $n \geq 1$,

t This work is part of a Ph.D. thesis done at the Hebrew University under the supervision of Professor A. Mann.

^{tt} The assertion of Theorem A is in fact true for $q \ge 8$ also. The proof for that can be found in [3]. See also Section 4 at the end of the paper.

Received December 5, 1984

Dixon ([1], thm. 3, p. 418) showed that $\gamma_n \le a^{n-1}$ where $a = 24^{1/3}$. If we set $\beta(q) = \log_a a$ for all $q \ge 11$, then clearly $q^{\beta(q)} = a$. Hence, we have the following Corollary:

COROLLARY. Let Δ and $b(n,q)$ be as in Theorem A. Then:

(0.1) $b(n, q) \leq q^{(1+\beta(q))n}/24^{1/3}$ *for all* $n \geq 1$.

Since $0 < \beta(q) < \frac{1}{2}$ and $\lim_{q\to\infty} \beta(q) = 0$, the bound given in (0.1) is indeed an improvement of the bound given in [5] for all $q \ge 11$ and $n \ge 1$.

We shall also prove the following theorem:

THEOREM B. Let Δ be a finite field of order q, where $q > 13$ and let Δ^* be the *multiplicative group of* Δ . Let $R \subset GL(n,\Delta)$ *be a solvable, completely reducible subgroup of order b(n, q), where n* \geq 1. Then there exists a solvable subgroup $\Gamma_n \subset S_n$ of maximal order, a solvable subgroup $\Gamma_{n-2} \subset S_{n-2}$ of maximal order, and a *solvable irreducible subgroup* $H \subseteq GL(2, \Delta)$ *of maximal order such that:*

(a) If $n \neq 2 \pmod{4}$ *or* $n \equiv 6 \pmod{16}$, *then R is conjugate in* $GL(n, \Delta)$ *to the wreath product* Δ^* Γ_n .

(*B*) If $n \equiv 2 \pmod{4}$ *but* $n \neq 6 \pmod{16}$, *then R* is conjugate in $GL(n, \Delta)$ to the *direct product* $H \times (\Delta^* \int_{n-2})$.

A. Mann ($[2]$) showed that all solvable subgroups of maximal order in S_n form a conjugacy class of subgroups in S_n . D. A. Suprunenko ([4], thm. 6, p. 167) determined up to conjugacy all maximal, irreducible, solvable subgroups of $GL(2, \Delta)$. Hence, as a corollary we shall show:

COROLLARY. If Δ is a finite field of order q and $q > 13$, then the set of all solvable, completely reducible subgroups of $GL(n,\Delta)$, of order $b(n,q)$, form a *conjugacy class of subgroups in GL(n,* Δ *), for all n* \geq *1.*

1. Preliminaries and notations

Throughout this paper the following notations will be used:

(a) Δ shall denote a finite field and q shall denote its order. We denote by Δ^* the multiplicative group of Δ .

(b) We shall fix a solvable subgroup of maximal order in S_n and denote it by Γ_n . We denote the order of Γ_n by γ_n .

(c) Let $\Gamma^{(1)} \subset S_{n_1}$, $\Gamma^{(2)} \subset S_{n_2}$, ..., $\Gamma^{(1)} \subset S_{n_i}$ be subgroups. Set $n = \sum_{i=1}^t n_i$. By the direct product $\Gamma^{(1)} \times \Gamma^{(2)} \times \cdots \times \Gamma^{(t)}$ we mean the subgroup of S_n acting on the set of indices $\{1, 2, \ldots, n_1\}$ like $\Gamma^{(1)}$ does, ..., and acting on the set indices $\{\sum_{i=1}^{k-1} n_i + 1, \sum_{i=1}^{k-1} n_i + 2, \ldots, \sum_{i=1}^{k} n_i\}$ like $\Gamma^{(k)}$ does on $\{1, \ldots, n_k\}$ respectively, where $2 \leq k \leq t$.

(d) Let $H_i \subseteq GL(n_i, \Delta)$ be subgroups for $1 \leq i \leq t$. By the direct product $H_1 \times H_2 \times \cdots \times H_t$ we mean the subgroup of $GL(n, \Delta)$ consisting of all matrices of the form diag(h_1, h_2, \ldots, h_t) where $h_i \in H_i$ for $1 \le i \le t$ and $n = \sum_{i=1}^t n_i$.

(e) The maximal order of a solvable, completely reducible subgroup of $GL(n, \Delta)$ shall be denoted by $b(n, q)$.

(f) Let G be a group and let $G_1, G_2 \subset G$ be subgroups. We shall write $G_1 \sim_G G_2$ to denote that G_1 and G_2 are conjugate subgroups in G. If the group G is understood from the context we shall merely write $G_1 \sim G_2$.

From now on we shall assume $q \ge 11$ and we mention that all numerical variables in this paper shall be integer variables.

This paper extensively uses the following concepts:

(1) The wreath product of permutation groups (see [4], p. 11). If $\Gamma' \subset S_n$ and $\Gamma'' \subset S_i$ are subgroups, then from now on $\Gamma' \int \Gamma''$ shall denote the wreath product of Γ' and Γ'' which is a subgroup of $S_{n,t}$.

(2) The wreath product of a linear group and a permutation group (see [4], p. 106). If $R \subset GL(n, \Delta)$ is a linear group and $\Gamma \subset S_i$ is a permutation group then from now on $R \int \Gamma$ shall denote the wreath product of R and Γ which is a subgroup of $GL(n \cdot t, \Delta)$.

(3) Primitivity and imprimitivity of linear groups (see [4], chapter 15, p. 103).

The proof of Theorem A and Theorem B relies on results of D. A. Suprunenko [4] and A. Mann [2] which we state below.

(1.1) ($[4]$, p. 139). Let M be a maximal primitive solvable subgroup of $GL(n, \Delta)$, then M contains the following invariant series:

$$
(E_n)\subset F\subset A\subset V\subset M
$$

where we fix the following notations:

- (1) M is a maximal primitive solvable subgroup of $GL(n, \Delta)$.
- (2) E_n is the identity element in $GL(n, \Delta)$.
- (3) F is a maximal abelian normal subgroup of M .
- (4) V is the centralizer of F in M .
- (5) *A/F* is maximal among the subgroups of *M/F* satisfying:
	- (i) A/F is an abelian normal subgroup of M/F .
	- (ii) $A/F \subseteq V/F$.

(1.2) ([4], lemma 1, p. 129) $F = K^*$, where K^* is the multiplicative group of a field extension K of $E_n \cdot \Delta$ and $[K:E_n \cdot \Delta]$ divides n. We fix the letter m to denote $m = [K : E_n \cdot \Delta]$ and we fix the letter r (like in [4]) to denote $r = n/m$.

(1.3) ([4], thm. 3, p. 141) $[A : F] = r^2$.

(1.4) ([4], thm. 15, p. 151) If $r = p_1^{l_1} p_2^{l_2} \cdots p_k^{l_k}$ is a prime factorization of r (where $p_i \neq p_i$ for $i \neq j$, $1 \leq i, j \leq k$). Then V/A is isomorphic to a solvable subgroup of the direct product of k symplectic groups $Sp(2l_i, p_i)$, $j = 1, ..., k$.

 (1.5) ([4], thm. 1, p. 138) Since V centralizes F, V can be viewed as a subgroup of $GL(r, K)$ (where K is like in (1.2)) and we have: V is an absolutely irreducible subgroup of $GL(r, K)$.

(1.6) ([4], Cor. 1, p. 130) $[M: V] \leq m$.

(1.7) ([4], thm. 6, p. 167) Every maximal irreducible solvable subgroup of $GL(2, \Delta)$ is conjugate in $GL(2, \Delta)$ to one of the following three subgroups:

 $G_{2,1}$ of order $2(q-1)^2$,

 $G_{2,2}$ of order $2(q^2-1)$,

 $G_{2,3}$ of order 24(q-1),

where $G_{2,1}$, $G_{2,2}$ and $G_{2,3}$ are as defined in ([4], chapter 19) and $G_{2,3}$ exists iff 2 does not divide q. We fix $G_{2,2}$ to denote the subgroup mentioned above.

(1.8) ([2]) Let $n \ge 1$ be an integer. For convenience of notations denote by Γ_0 the empty set, and for a permutation group Γ , Γ Γ ₀ = Γ ₀ and Γ ₀ × Γ = Γ . Let $n = 4k + t$ where $k \ge 0$ and $0 \le t \le 3$. Then Γ_n is conjugate in S_n to the following group:

(1) If $t = 0$ then $\Gamma_n \sim S_4 \int \Gamma_k$.

- (2) If $t = 1$ then:
	- α) If $n \equiv 9 \pmod{16}$ but $n \neq 25 \pmod{64}$ then Γ_n is conjugate in S_n to the direct product $(S_4 \int \Gamma_{k-2}) \times (S_3 \int S_3)$.
	- (β) If $n \neq 9 \pmod{16}$ or $n \equiv 25 \pmod{64}$ then $\Gamma_n \sim \Gamma_{n-1} \times S_1$.
- (3) If $t = 2$ then:
	- (a) If $n \equiv 6 \pmod{16}$ then Γ_n is conjugate in S_n to the direct product $(S_4 \cap F_{k-1}) \times (S_3 \cap S_2).$
	- (β) If $n \neq 6 \pmod{16}$ then Γ_n is conjugate in S_n to the direct product $\Gamma_{n-2} \times S_2$.
- (4) If $t = 3$ then $\Gamma_n \sim \Gamma_{n-3} \times S_3$.

2. Preliminary iemmas

In order to prove Theorem A and Theorem B we shall need several lemmas, which we prove in this section.

(2.1) Let $n \geq 4$ and $n \neq 5$, then $\gamma_n > n^2$.

PROOF. For $n = 4$ we have $\gamma_4 = |S_4| = 24$ hence $\gamma_4 > 4^2$. For $n = 6, 7$ clearly S_n contains *S*₃ S_2 which is solvable of order 72, hence $\gamma_6 > 6^2$ and $\gamma_7 > 7^2$. For $n \ge 8$ we proceed by induction on *n*. Assume by induction that for any integer n_1 such that $6 \le n_1 < n$ we have $\gamma_{n_1} > n_1^2$. Since clearly S_n contains the group $\Gamma_{n-2} \times S_2$, which is a solvable group of order 2 γ_{n-2} , then by induction we have:

$$
\gamma_n \geq 2\gamma_{n-2} > 2(n-2)^2 = 2n^2 - 8n + 8.
$$

But it is easy to see that for all $n \ge 8$ we have $2n^2-8n+8 > n^2$ hence we conclude: $\gamma_n > n^2$.

(2.2) *For all* $n \ge 2$ *we have* $\gamma_n > (1.4)^n$.

PROOF. If *n* is even, set $n = 2k$. Then S_n contains the direct product

$$
S_2 \times S_2 \times \cdots \times S_2,
$$

which is a solvable group of order 2^k Hence we have $\gamma_n \geq 2^k = 2^{n/2} > (1.4)^n$.

If *n* is odd, set $n = 2k + 1$. Then S_n contains the direct product

$$
S_3 \times S_2 \times \cdots \times S_2,
$$

$$
k-1 \text{ times}
$$

which is solvable of order $6 \cdot 2^{k-1}$. Hence we have

$$
\gamma_n \geq 6 \cdot 2^{k-1} = 3 \cdot 2^k > 2^{k+1} = 2^{n+1/2} > 2^{n/2} > (1.4)^n.
$$

(2.3) *For any n* \geq 3 *we have* $\gamma_n(q - 1)^n > nq^n$.

PROOF. We remind the reader that we always assume $q \ge 11$. For $3 \le n \le 9$ the assertion of (2.3) can easily be checked, noticing that $\gamma_5 \geq 24$ (since $S_5 \supset S_4$), $\gamma_6 \ge 72$ (since $S_6 \supset S_3$ (S_2) , $\gamma_7 \ge 144$ (since $S_7 \supset S_4 \times S_3$), $\gamma_8 \ge (24)^2 2$ (since $S_8 \supset S_4$ S_2) and $\gamma_9 \geq 6^4$ (since $S_9 \supset S_3$ S_3).

For $n \ge 10$, since $q \ge 11$ we have $q/(q-1) \le 1.1$. By (2.2) we have $\gamma_n > (1.4)^n$. Hence the assertion of (2.3) follows from the inequality $(1.4)^n > n(1.1)^n$, which can easily be shown by induction. •

 (2.4) Let $n \ge 2$. Assume that Γ_n is a transitive subgroup of S_n . Then we have $\gamma_{2n}/\gamma_n \geq 12^{n/3}$.

PROOF. By (1.8) since Γ_n is transitive we must have either $n = 2, 3, 6, 9$ or $n = 4k$ where $k \ge 1$. For $n = 2,3,6,9$ the assertion of (2.4) can easily be checked, using (1.8). For $n = 4k$ we have $2n = 8k$, hence S_{2n} contains the group $\Gamma_{8} \int \Gamma_{k}$ which is clearly solvable of order $\gamma_{8}^{k} \cdot \gamma_{k}$. By (1.8) $\Gamma_{n} = S_{4} \int \Gamma_{k}$. Hence we have $\gamma_{2n}/\gamma_n \ge \gamma_8^k \cdot \gamma_k/\gamma_4^k \cdot \gamma_k = \gamma_8^k/\gamma_4^k$. But by (1.8) we have $\Gamma_8 = S_4 \cdot S_2$. Hence $\gamma_8 = (24)^2 \cdot 2$. Hence we have

$$
\gamma_{2n}/\gamma_n \geq [(24)^2 \cdot 2]^k/(24)^k = 48^k = 48^{n/4}.
$$

Now since $48^{1/4} > 12^{1/3}$, we conclude $\gamma_{2n}/\gamma_n \ge 12^{n/3}$.

(2.5) *For any* $n \ge 2$ *such that* $n \ne 2 \pmod{4}$ *or* $n = 6 \pmod{16}$ *we have* $\gamma_n \geq 2\frac{2}{3}\gamma_{n-2}$.

PROOF. Set $n = 4k + t$, where $k \ge 0$ and $0 \le t \le 3$. We distinguish 4 cases according as $t = 0, 1, 2, 3$ respectively.

Case 1. t = 0

In this case $n = 4k = 4(k - 1) + 4$. Since clearly $S_n \supset (S_4 \int \Gamma_{k-1}) \times S_4$ we have $\gamma_n \geq |S_4| \Gamma_{k-1} \cdot |S_4|$. Since $\gamma_{n-1} \geq \gamma_{n-2}$ then by

$$
\gamma_{n-2}\leqq\gamma_{n-1}=\big|S_4\big|\Gamma_{k-1}\big|\cdot\big|S_3\big|.
$$

Hence we have: $\gamma_n/\gamma_{n-2} \ge |S_4|/|S_3| = 4 > 2^{\frac{2}{3}}$.

Case 2. t = 1

In this case $n=4k+1=4(k-1)+5$ and $n-2=4(k-1)+3$.

Clearly we have $\gamma_n \geq |S_4| \Gamma_{k-1}| \cdot |S_4|$. By (1.8) we have $\gamma_{n-2} = |S_4| \Gamma_{k-1}| \cdot |S_3|$. Hence we have: $\gamma_n / \gamma_{n-2} = |S_4| / |S_3| = 4 > 2^{\frac{2}{3}}$.

Case 3. t = 2

By the assumption on *n* we have $n \equiv 6 \pmod{16}$. Set $n = 4k + 2$, then we must have $k \equiv 1 \pmod{4}$. We distinguish 2 cases (α) and (β) as follows:

(a) $k \equiv 9 \pmod{16}$ but $k \neq 25 \pmod{64}$

By (1.8) we have

$$
\Gamma_{n-2} \sim S_4 \int \Gamma_k \sim S_4 \int (\Gamma_{k-9} \times \Gamma_9) \sim (S_4 \int \Gamma_{k-9}) \times (S_4 \int \Gamma_9) \sim (S_4 \int \Gamma_{k-9}) \times \Gamma_{36}.
$$

Now since $n = 4(k - 9) + 38$ we clearly have $\gamma_n \geq |S_4| \Gamma_{k-9} \times |\Gamma_{38}|$. Hence by the above and by (1.8) we have

$$
\gamma_n/\gamma_{n-2} \ge \gamma_{38}/\gamma_{36} = |S_4 \int S_4 \int S_2 \cdot |\Gamma_6| / |S_4 \int \Gamma_9|
$$

= $(24)^{10} \cdot 2 \cdot 2^3 \cdot 3^2 / (24)^9 \cdot 2^4 \cdot 3^4 = 24/9 = 2\frac{2}{3}$

as asserted.

(β) $k \neq 9 \pmod{16}$ or $k \equiv 25 \pmod{64}$

By (1.8) we must have $\Gamma_{n-2} \sim (S_4/\Gamma_{k-1}) \times S_4$. But again by (1.8) we have $\Gamma_n \sim (S_4 \int \Gamma_{k-1}) \times \Gamma_6$. Hence we have $\gamma_n / \gamma_{n-2} = |\Gamma_6| / |S_4| = 72/24 = 3 > 2\frac{2}{3}$.

Case 4. t = 3

In this case $n = 4k + 3$. We distinguish 2 cases (α) and (β) as follows:

(a) $n-2 \equiv 9 \pmod{16}$ but $n-2 \not\equiv 25 \pmod{64}$

By (1.8) we have $\Gamma_{n-2} \sim (S_4 \int \Gamma_{k-2}) \times \Gamma_9$. But since $4k + 3 = 4(k - 2) + 11$ we have $\gamma_n \geq |S_4| \Gamma_{k-2} | \times \Gamma_{11}$. Hence by (1.8) we have

$$
\gamma_n/\gamma_{n-2} \geq |\Gamma_{11}|/|\Gamma_{9}| = (24)^2 \cdot 2 \cdot 6/6^4 = 2 \cdot 4^2 \cdot 6^3/6^4 = 32/6 > 2\frac{2}{3}.
$$

(β) $n-2 \neq 9 \pmod{16}$ or $n-2 \equiv 25 \pmod{64}$

By (1.8) we have $\Gamma_{n-2} \sim S_4/\Gamma_k$ and $\Gamma_n \sim (S_4/\Gamma_k) \times S_3$. Hence we have: $\gamma_n/\gamma_{n-2} = |S_3| = 6 > 2\frac{2}{3}.$

 (2.6) *Let p be a prime and let l* \geq 1. Then we have

(α) For any $q \ge 13$ *the inequality* $(q - 1)^{p^{l-1}} > p^{2l^2+1}$ *holds.*

(B) For q = 11 if p^t \neq *4 the inequality* $(q - 1)^{p^{k-1}} > p^{2l^2+1}$ *holds.*

PROOF. The proof follows easily by induction.

(2.7) Let p be a prime and let $l \ge 1$. Let G be the symplectic group $Sp(2l, p)$. *Then we have* $|G| < p^{2l^2+1}$.

PROOF. The order of G is given by $|G| = p^{12} \prod_{i=1}^{l} (p^{2i} - 1)$. Hence

$$
|G| < p^{l^2} \prod_{i=1}^l p^{2i} = p^{l^2} p^{\sum_{i=1}^l 2i} = p^{l^2 + l(l+1)} = p^{2l^2 + l}.
$$

(2.8) Let p be a prime, $l \ge 1$ and let $n = p^l$. Then we have:

(a) For $q > 13$ the inequality $\gamma_n(q-1)^n > n^2(q-1) |\text{Sp}(2l, p)|$ holds.

(B) For $q = 11, 13$ the inequality $\gamma_n q^n > n^2(q-1)|\text{Sp}(2l, p)|$ holds.

PROOF. For $n = 2, 3, 4, 5$ it is easy to check that (α) and (β) hold, noticing that $\gamma_5 \geq 24$

For $n > 5$ we have by (2.6) $(q - 1)^{n-1} > p^{2l^2+1}$ and by (2.1) we have $\gamma_n > n^2$. By (2.7) we have $|Sp(2l, p)| < p^{2l^2+1}$. Consequently we have

$$
\gamma_n(q-1)^n = \gamma_n(q-1)(q-1)^{n-1} > n^2(q-1)p^{2l^2+1} > n^2(q-1)|\text{Sp}(2l, p)|
$$

for all $q \ge 11$.

(2.9) Let p be a prime, $l \ge 1$ and let $n = p^l$. Then we have

$$
\gamma_n q^n > n^2(q-1)|\text{Sp}(2l,p)|, \quad \text{for all } q \geq 11.
$$

PROOF. (2.9) is an immediate consequence of (2.8) .

3. Proofs of Theorem A and Theorem B

THEOREM A. *Denote by b(n,q) the maximal possible order of a solvable, completely reducible subgroup of GL(n,* Δ *). Then we have b(n, q)* $\leq \gamma_n q^n$, for all $n\geq 1$.

PROOF. Let R be a solvable, completely reducible subgroup of $GL(n, \Delta)$. The proof of the theorem is by induction on n. For $n = 1$ the assertion of the theorem is trivial. Assume now that $n \ge 2$ and that the assertion of the theorem holds for every $n_1 < n$. We distinguish 3 cases according as R is primitive, imprimitive and reducible respectively.

Case A. R = M is primitive

Clearly we may assume that M is a maximal primitive solvable subgroup of $GL(n, \Delta)$. We shall use in Case A the notations introduced in Chapter 1. We distinguish 2 cases according as $m = 1$ and $m > 1$ respectively.

Case 1. m = 1

We shall show that in this case the assertion of the theorem is a consequence **of (2.9).**

Let $n = p_1^{l_1} \cdot p_2^{l_2} \cdots p_k^{l_k}$ be a prime factorization of n (where $p_i \neq p_j$, for $i \neq j$, $1 \le i, j \le k$). Since $m = 1$ we have here, by the definition of $m, K = E_n \cdot \Delta$, and by (1.2) $F = K^* = E_n \cdot \Delta^*$. Moreover we have $V = M$ and by (1.3) $[A : F] = n^2$ (since here $r = n$). By (1.4) we have

$$
[M:A] = [V:A] \leq \prod_{i=1}^{k} |Sp(2l_i,p_i)|.
$$

Hence with the aid of (1.1) we get

$$
|M| \leq [M:A] \cdot [A:F] \cdot |F| \leq \left(\prod_{j=1}^k |Sp(2l_j,p_j)|\right) \cdot n^2 \cdot (q-1).
$$

But since $n^2 = (p_1^{l_1})^2 \cdot (p_2^{l_2})^2 \cdots (p_k^{l_k})^2$ and since $(q-1) \leq (q-1)^k$ we have

$$
\left(\prod_{j=1}^k |Sp(2l_j,p_j)|\right) n^2(q-1) \leq \prod_{j=1}^k (p_j^l)^2(q-1) |Sp(2l_j,p_j)|.
$$

So we conclude

(3.1)
$$
|M| \leq \prod_{j=1}^k (p_j'^2)(q-1)^s |Sp(2l_j,p_j)|.
$$

Now S_n contains the direct product $\prod_{p_1}^{L_1} \times \prod_{p_2}^{L_2} \times \cdots \times \prod_{p_k}^{L_k}$ (since $n \geq p_1^{L_1} + \cdots + p_k^{L_k}$) which is a solvable group of order $\prod_{j=1}^{k} \gamma_{n_j}^{L_j}$. Hence we have

$$
\gamma_n q^n \geq \gamma_n q^{p_1^{l_1}+p_2^{l_2}+\cdots+p_k^{l_k}} \geq \prod_{j=1}^k \gamma_{p_j^{l_j}} q_{p_j^{l_j}}^{l_j}.
$$

So we conclude

$$
\gamma_n q^n \geqq \prod_{j=1}^k \gamma_{p_j^n} q^{p_j^n}
$$

It is clear now by (3.1) and (3.2) that case 1 is an immediate consequence of (2.9).

Case 2. $m > 1$

Since $r = n/m$ we have here $r < n$. By (1.5) we have $V \subseteq GL(r, K)$ and V is solvable and irreducible. Hence by induction, since $|K|=q^m$, we have $|V|\leq$ γ , $(q^m)' = \gamma$, q^n . Now $|M| = [M:V] |V|$. By (1.6) we have $[M:V] \leq m$, consequently $|M| \leq m\gamma_q^n$. We shall show now that $\gamma_n \geq m\gamma_r$. Since $n = m \cdot r$ it follows that S_n contains the direct product

$$
\Gamma_r \times \Gamma_r \times \cdots \times \Gamma_r
$$

m times

which is a solvable group of order γ_r^m . Hence we have $\gamma_n \geq \gamma_r^m$. If $r > 1$ then in order to show the inequality $\gamma_n \geq m\gamma_r$ it suffices to show the inequality $\gamma_r^m \geq m\gamma_r$, i.e. $\gamma_r^{m-1} \ge m$. Since $r > 1$ we have $\gamma_r \ge 2$, hence clearly $\gamma_r^{m-1} \ge m$. If $r = 1$ then $m = n$ and the inequality $\gamma_n \geq m\gamma$, takes the form $\gamma_n \geq n$ which is trivially true. Consequently we have $\gamma_n \geq m\gamma_r$ and we conclude $\gamma_n q^n \geq m\gamma_r q^n \geq |R|$ as asserted.

Case B. R is imprimitive

By the definition of imprimitivity of a linear group and by the definition of the wreath product of a linear group and a permutation group we clearly may assume the following; There exists a factorization $n = n_1 \cdot n_2$ with $n_1 < n$. There exist a solvable, irreducible subgroup $H_1 \subseteq GL(n_1, \Delta)$ and a (transitive) solvable subgroup $\Gamma \subseteq S_{n_2}$, such that R is contained in $H_1 \int \Gamma$. By induction we have $|H_1| \leq \gamma_{n_1} q^{n_1}$. Hence by the definition of a wreath product we have

$$
|R| \leq |H_1 \cap \Gamma| = |H_1|^{n_2} |\Gamma| \leq \gamma_{n_1}^{n_2} \cdot q^{n_1 n_2} \cdot |\Gamma| = \gamma_{n_1}^{n_2} |\Gamma| \cdot q^n.
$$

We shall show that $\gamma_n \ge \gamma_{n_1}^{n_2} \cdot |\Gamma|$. Clearly S_n contains the group $\Gamma_{n_1} \int \Gamma$ which is solvable of order $\gamma_{n_1}^{n_2} \cdot |\Gamma|$. Hence $\gamma_n \ge \gamma_{n_1}^{n_2} \cdot |\Gamma|$. So we conclude $\gamma_n q^n \ge |R|$.

Case C. R is reducible

Since R is completely reducible it follows by the definition of complete reduciblitiy that there exist an integer $t > 1$ and integers $n_i \ge 1$, $1 \le i \le t$ with

 $\Sigma_{i=1}^{t} n_i = n$, such that R is conjugate in $GL(n,\Delta)$ to the group $H_1 \times H_2 \times \cdots \times$ *H_t*. Here *H_i* is a solvable, irreducible subgroup of $GL(n_i, \Delta)$, $1 \leq i \leq t$. Hence by induction we have

$$
|R| = \prod_{i=1}^t |H_i| \leq \prod_{i=1}^t \gamma_{n_i} q^{n_i} = \left(\prod_{i=1}^t \gamma_{n_i}\right) q^n.
$$

But clearly S_n contains the direct product $\Gamma_{n_1} \times \Gamma_{n_2} \times \cdots \times \Gamma_{n_r}$, hence $\gamma_n \geq$ $\Pi_{i=1}^t \gamma_{n_i}$. Consequently $\gamma_n q^n \geq |R|$.

PROPOSITION 3.1. Let $R \subseteq GL(n, \Delta)$ be a solvable, completely reducible sub*group of order b(n, q), where* $q > 13$ *. If* $n > 2$ *then R is not primitive.*

PROOF. Note that $GL(n, \Delta)$ contains the subgroup $\Delta^* \int_{\Gamma_n}$ which is by definition solvable and completely reducible of order $\gamma_n (q - 1)^n$. Hence $b(n, q) \ge$ $\gamma_n(q-1)^n$. We shall show that if R is primitive then we must have $|R| <$ $\gamma_n(q-1)^n$. Assume now that $R = M$ is primitive. We distinguish 3 cases according as $m=1$, $1 < m < n$ and $m = n$ respectively. (Again we use the notation introduced in Section 1.)

Case 1. m = 1

In this case we derive that $|R| < \gamma_n (q - 1)^n$ exactly in the same way as in the proof of subcase 1 of case A in the proof of Theorem A, using $(2.8(\alpha))$.

Case 2. $2 \leq m < n$

Like in the proof of subcase 2 of case A, in the proof of Theorem A we have $|R| \leq m\gamma q^n$. Hence we must show that $\gamma_n(q-1)^n > m\gamma q^n$. Now clearly S_n contains the wreath product Γ , Γ _m, which is a solvable group of order γ ^m, γ _m. Hence $\gamma_n \ge \gamma_n^m \gamma_m$ and it suffices to show that $\gamma_n^m \gamma_m (q-1)^n > m \gamma_n q^n$. But it is easy to see that $\gamma_m \geq m$ for all m. Hence it suffices to show that $\gamma_n^m(q-1)^n$ γ , q ". This last inequality is equivalent to the inequality

$$
\gamma_r^{m-1} > \left(\frac{q}{q-1}\right)^n.
$$

Now since $2 \le m < n$ we have $2 \le r \le n/2$. Hence by (2.2) we have

$$
\gamma_r^{m-1} > (1.4)^{r(m-1)} > (1.1)^{2r(m-1)} = (1.1)^{2n-2r} \geq (1.1)^n.
$$

But since $q > 13$ we have $q/(q-1) \le 1.1$. Hence we have

$$
\gamma_r^{m-1} > (1.1)^n \geq \left(\frac{q}{q-1}\right)^n.
$$

Case 3. m = n

Like in the proof of subcase 2 of case A, in the proof of Theorem A we have $|R| \leq nq^n$. Hence by (2.3) we have $\gamma_n(q-1)^n > nq^n \geq |R|$.

PROPOSITION 3.2. Let $n > 1$. Assume that Γ_n is transitive. Let $R_1, R_2 \subset$ GL(2n, Δ) *be subgroups defined by:* $R_1 = G_{2,2} \int \Gamma_n$ *and* $R_2 = \Delta^* \int \Gamma_{2n}$. *Then for* $|\Delta|=q>13$ *we have* $|R_1|<|R_2|$.

PROOF. Recall that $G_{2,2}$ is defined in (1.7). Clearly $|R_1| = [2(q^2-1)]^n \cdot \gamma_n$ and $|R_2| = (q-1)^{2n}\gamma_{2n}$. Hence we must show $(q-1)^{2n}\gamma_{2n} > [2(q^2-1)]^n\gamma_n$. The last inequality is equivalent to the inequality

$$
\frac{\gamma_{2n}}{\gamma_n} > [2(q+1)/(q-1)]^n.
$$

But since $q > 13$ we have $q \ge 16$ and it is easy to check that for $q \ge 16$ we have $2(q + 1)/(q - 1) < 12^{1/3}$. Hence by (2.4) we have

$$
\frac{\gamma_{2n}}{\gamma_n}\geq 12^{n/3}>[2(q+1)/(q-1)]^n.
$$

PROPOSITION 3.3. Let $R \subset GL(2, \Delta)$ *be a solvable, completely reducible subgroup of order b*(2, *q*), where $|\Delta| = q \ge 13$. *Then R is conjugate in GL*(2, Δ) *to the group G2.2.*

PROOF. If R is reducible, then clearly $R \leq (q-1)^2$. Hence the assertion of Proposition 3.3 is an easy consequence of (1.7).

PROPOSITION 3.4. Let $R \subset GL(n, \Delta)$ be a solvable, completely reducible sub*group of order b(n, q), where* $q > 13$ *and n > 2. If R is irreducible then R is conjugate in* $GL(n, \Delta)$ *to* $\Delta^* \Gamma_n$.

PROOF. By Proposition 3.1 R is not primitive. Hence clearly there exist a factorization $n = l \cdot k$ such that $R = M \int \Gamma$ where M is a primitive solvable subgroup of $GL(l, \Delta)$ of order $b(l, q)$, and Γ is a solvable subgroup of maximal order in S_k . By Proposition 3.1 we must have either $l = 1$ or $l = 2$. Hence we must have either $n = 2 \cdot k$ and $R = H \int \Gamma$ where $H \subseteq GL(2, \Delta)$ is a solvable completely reducible subgroup of order $b(2, q)$ and Γ is a solvable subgroup of S_k of order γ_k , or $R = \Delta^* \int \Gamma'$ where Γ' is a solvable subgroup of S_n of order γ_n . By Proposition 3.3 and by (1.8) we clearly have that R is conjugate in $GL(n, \Delta)$ to $G_{2,2} \int_{-\infty}^{\infty}$ Γ_k (n = 2k) or R is conjugate in GL(n, Δ) to $\Delta^* \int_{-\infty}^{\infty}$. Now if $n = 2k$ and $R \sim G_{2,2} \int \Gamma_k$ then clearly since R is irreducible Γ_k must be a transitive subgroup of S_k . But then by Proposition 3.2 we have $|\Delta^* \Gamma_n| > |G_{2,2}(\Gamma_k)| (k > 1)$ since $n > 2$) which is a contradiction to the definition of R. Hence we must have $R \sim \Delta^* \int \Gamma_n$ as asserted.

THEOREM B.^{*} *Let* $R \subset GL(n,\Delta)$ *be a solvable, completely reducible subgroup of order b(n,q), where* $|\Delta| = q > 13$ *and n* \geq 1. Then the following assertion *holds :*

(a) If $n \neq 2 \pmod{4}$ *or* $n \equiv 6 \pmod{16}$ *then we have* $R \sim \Delta^* \int \Gamma_n$.

(β) If $n \equiv 2 \pmod{4}$ *but* $n \neq 6 \pmod{16}$ *then we have* $R \sim G_{2,2} \times (\Delta^* \int_{n-2})$.

PROOF. If R is irreducible then if $n = 2$ Theorem B is a consequence of Proposition 3.3. If $n > 2$ then by Proposition 3.4 $R \sim \Delta^* \Gamma_n$. But since R is irreducible Γ_n must be transitive, hence by (1.8) $n = 3, 6, 9$ or $n = 4k$ where $k \ge 1$. Hence clearly the assertion of Theorem B holds in this case.

If R is reducible, then clearly R is conjugate in $GL(n, \Delta)$ to the group $H_1 \times H_2 \times \cdots \times H_t$, where $H_i \subseteq GL(n_i, \Delta)$ is a solvable irreducible subgroup of order $b(n_i, q)$, for $1 \le i \le t$, and $n = \sum_{i=1}^t n_i$ where $n_i \ge 1$ for $1 \le i \le t$. Now by Proposition 3.1 either $n_i = 2$ and H_i is conjugate in $GL(n_i, \Delta)$ to $G_{2,2}$, or H_i is conjugate in $GL(n_i, \Delta)$ to $\Delta^* \Gamma_{n_i}$. If there were $1 \leq i, j \leq t$ with $i \neq j$ such that $H_i \sim G_{2,2}$ and $H_i \sim G_{2,2}$ then clearly we can assume without loss of generality that $i = 1$ and $j = 2$. But then we could replace $H_1 \times H_2$ by $\Delta^* \int_{-1}^{1} I_4$ in the group $H_1 \times H_2 \times \cdots \times H_t$ to obtain a solvable, completely reducible subgroup of order larger than R (since $|G_{2,2}|^2 < (q-1)^4 \cdot 24$). Hence we reach a contradiction. By the above remark we clearly may assume that either H_1 is conjugate in $GL(2, \Delta)$ to $G_{2,2}$ and H_i is conjugate in $GL(n_i,\Delta)$ to $\Delta^* \int F_{n_i}$ for $2 \le i \le t$, or H_i is conjugate in $GL(n_i, \Delta)$ to $\Delta^* \int_{n_i}$ for all $1 \leq i \leq t$. In the first case $H_2 \times \cdots \times H_t$ is conjugate in $GL(n_2 + n_3 + \cdots + n_t, \Delta)$ to $(\Delta^* \int \Gamma_{n_2}) \times (\Delta^* \int \Gamma_{n_3}) \times \cdots \times (\Delta^* \int \Gamma_{n_t})$ which is clearly conjugate in $GL(n_2 + n_3 + \cdots + n_t, \Delta)$ to $\Delta^* \int (\Gamma_{n_2} \times \Gamma_{n_3} \times \cdots \times \Gamma_{n_t})$ Γ_{n_i}). By the definition of R we clearly must have $\Gamma_{n_2} \times \Gamma_{n_3} \times \cdots \times \Gamma_{n_i}$ is conjugate in $S_{n_2+n_3+\cdots+n_i}$ to $\Gamma_{n_2+n_3+\cdots+n_i}$. Similarly in the second case R is conjugate in $GL(n, \Delta)$ to $\Delta^* \int_{n} \Gamma_n$. Hence we conclude that either $R \sim G_{2,2} \times (\Delta^* \int_{n} \Gamma_{n-2})$ or $R \sim \Delta^* \Gamma_n$.

If $n \neq 2 \pmod{4}$ or $n \equiv 6 \pmod{16}$ then by (2.5) we have:

$$
|\Delta^* \int \Gamma_n| = (q-1)^n \gamma_n \geq (q-1)^n \cdot 2^2 \gamma_{n-2} = 2^2 \frac{1}{3} (q-1)^2 (q-1)^{n-2} \gamma_{n-2}.
$$

and $|G_{2,2} \times (\Delta^* \int_{r} \Gamma_{n-2})| = |G_{2,2}| (q-1)^{n-2} \gamma_{n-2}$. Since it is easy to check that for $q > 13$ we have $2\frac{2}{3}(q-1)^2 > |G_{2,2}|$ we conclude:

 (α) If $n \neq 2 \pmod{4}$ or $n \equiv 6 \pmod{16}$ then $R \sim \Delta^* \Gamma_n$.

^t The assertion of Theorem B fails to be true for $q \le 13$ since for $q \le 13$, $|G_{2,2} f S_3| > |\Delta^* f S_6|$.

Now if $n \equiv 2 \pmod{4}$ but $n \neq 6 \pmod{16}$, then by (1.8) $\Gamma_n \sim \Gamma_{n-2} \times S_2$. Hence clearly Δ^* $\Gamma_n \sim (\Delta^* \Gamma_{n-2}) \times (\Delta^* \Gamma_{2})$. But

$$
|G_{2,2}\times(\Delta^*\int\Gamma_{n-2})|=|\Delta^*\int\Gamma_{n-2}\cdot|G_{2,2}|
$$

and it is easy to check that for $q > 13$ $|G_{2,2}| > |\Delta^*|S_2|$ and we conclude:

(β) If $n = 2 \pmod{4}$ but $n \neq 6 \pmod{16}$ then $R \sim G_{2,2} \times (\Delta^* \int \Gamma_{n-2})$.

4. Added remarks

The proofs for all the propositions below can be found in [3].

$$
(4.1) \t b(n,q) \leq q^{\alpha(q)\cdot n}/24^{1/3} \t \text{ for all } n \geq 1
$$

where $\alpha(q)$ is defined as follows:

(i) For $q=8$ or $q\geq 11$

 $\alpha(q) = (3 \log(q-1) + \log(24))/3 \log q$.

(ii) For $q = 3, 5, 7, 9$

 $\alpha(q) = (3 \log(q-1) + 4 \log(24))/6 \log q$.

(iii)
$$
\alpha(4) = 2/3 + \frac{13}{18} \log_2 3.
$$

(iv)
$$
\alpha(2) = 1 + \frac{2}{3} \log_2 3
$$
.

Note that $(4.1)(i)$ is a slight improvement of (0.1) of the Introduction.

We mention that it is easy to see that $\alpha(q)$ is a monotonic decreasing function of q for $q \ge 11$, and $\lim_{q \to \infty} \alpha(q) = 1$.

The following table gives upper bounds for $\alpha(q)$ where $q = 2, 3, 4, 5, 7, 8, 9, 11$; the data are accurate up to two decimal digits.

(4.2) The bounds given for $b(n, q)$ in (4.1) are the best in the following sense: If $b(n,q) \le D \cdot q^{s(q)-n}$ for all $n \ge 1$, then we have $\delta(q) \ge \alpha(q)$, and if $\delta(q) =$ $\alpha(q)$ then $D \geq 1/24^{1/3}$.

(4.3) Let $R \subseteq GL(n, \Delta)$ be a solvable, completely reducible subgroup of order $b(n,3)$ (here $|\Delta| = 3$). Then we have:

(i) If $n = 2k$ is even, then $R \sim GL(2, \Delta) \int \Gamma_k$.

(ii) If $n = 2k + 1$ is odd, then $R \sim (GL(2, \Delta) \int \Gamma_k) \times \Delta^*$.

We mention that for $|\Delta| = 11$ the solvable, completely reducible subgroups of $GL(n, \Delta)$ of order $b(n, 11)$ do not form a single conjugacy class. Indeed the groups $G_{2,2}$ and $G_{2,3}$ which are contained in $GL(2, \Delta)$ and are introduced in (1.7) have the same order, 240, and are not conjugate in $GL(2, \Delta)$. (It is easy to see that $b(2, 11) = 240$.) For $|\Delta| = 7$, GL(3, Δ) possesses at least two conjugacy classes of solvable, completely reducible subgroups of order $b(3, 7)$ which are the following: the primitive solvable subgroups of order $6⁴$ (see [4], thm. 6, pp. 167) and the subgroups conjugate to Δ^* (S₃ whose order is also 6⁴. For $|\Delta|$ = 2,4,5,8,9, 13 we do not know whether the solvable, completely reducible subgroups of order $b(n, q)$ form a unique conjugacy class.

ACKNOWLEDGEMENT

The author is grateful to Professor A. Mann and Dr. A. Juhasz for their valuable suggestions and remarks.

REFERENCES

1. J. D. Dixon, *The Fitting subgroup of a linear solvable group,* J. Aust. Math. Soc. 7 (1967), 417-424.

2. A. Mann, private communication.

3. Y. Segev, Ph.D. Thesis, The Hebrew University of Jerusalem, 1984.

4. D. A. Suprunenko, *Matrix Groups,* Translations of Mathematical Monographs, Vol. 45, 1976.

5. T. R. Wolf, *Solvable and nilpotent subgroup of* $GL(n, q^m)$, Can. J. Math. 5 (1982), 1097–1111.